Solve for x
x = \frac{800 \sqrt{5175826} + 1444200}{1873} \approx 1742.784484953
x=\frac{1444200-800\sqrt{5175826}}{1873}\approx -200.65955169
Graph
Share
Copied to clipboard
-37.46x^{2}+57768x+13100000=0
Multiply 13.1 and 1000000 to get 13100000.
x=\frac{-57768±\sqrt{57768^{2}-4\left(-37.46\right)\times 13100000}}{2\left(-37.46\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -37.46 for a, 57768 for b, and 13100000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-57768±\sqrt{3337141824-4\left(-37.46\right)\times 13100000}}{2\left(-37.46\right)}
Square 57768.
x=\frac{-57768±\sqrt{3337141824+149.84\times 13100000}}{2\left(-37.46\right)}
Multiply -4 times -37.46.
x=\frac{-57768±\sqrt{3337141824+1962904000}}{2\left(-37.46\right)}
Multiply 149.84 times 13100000.
x=\frac{-57768±\sqrt{5300045824}}{2\left(-37.46\right)}
Add 3337141824 to 1962904000.
x=\frac{-57768±32\sqrt{5175826}}{2\left(-37.46\right)}
Take the square root of 5300045824.
x=\frac{-57768±32\sqrt{5175826}}{-74.92}
Multiply 2 times -37.46.
x=\frac{32\sqrt{5175826}-57768}{-74.92}
Now solve the equation x=\frac{-57768±32\sqrt{5175826}}{-74.92} when ± is plus. Add -57768 to 32\sqrt{5175826}.
x=\frac{1444200-800\sqrt{5175826}}{1873}
Divide -57768+32\sqrt{5175826} by -74.92 by multiplying -57768+32\sqrt{5175826} by the reciprocal of -74.92.
x=\frac{-32\sqrt{5175826}-57768}{-74.92}
Now solve the equation x=\frac{-57768±32\sqrt{5175826}}{-74.92} when ± is minus. Subtract 32\sqrt{5175826} from -57768.
x=\frac{800\sqrt{5175826}+1444200}{1873}
Divide -57768-32\sqrt{5175826} by -74.92 by multiplying -57768-32\sqrt{5175826} by the reciprocal of -74.92.
x=\frac{1444200-800\sqrt{5175826}}{1873} x=\frac{800\sqrt{5175826}+1444200}{1873}
The equation is now solved.
-37.46x^{2}+57768x+13100000=0
Multiply 13.1 and 1000000 to get 13100000.
-37.46x^{2}+57768x=-13100000
Subtract 13100000 from both sides. Anything subtracted from zero gives its negation.
\frac{-37.46x^{2}+57768x}{-37.46}=-\frac{13100000}{-37.46}
Divide both sides of the equation by -37.46, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{57768}{-37.46}x=-\frac{13100000}{-37.46}
Dividing by -37.46 undoes the multiplication by -37.46.
x^{2}-\frac{2888400}{1873}x=-\frac{13100000}{-37.46}
Divide 57768 by -37.46 by multiplying 57768 by the reciprocal of -37.46.
x^{2}-\frac{2888400}{1873}x=\frac{655000000}{1873}
Divide -13100000 by -37.46 by multiplying -13100000 by the reciprocal of -37.46.
x^{2}-\frac{2888400}{1873}x+\left(-\frac{1444200}{1873}\right)^{2}=\frac{655000000}{1873}+\left(-\frac{1444200}{1873}\right)^{2}
Divide -\frac{2888400}{1873}, the coefficient of the x term, by 2 to get -\frac{1444200}{1873}. Then add the square of -\frac{1444200}{1873} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2888400}{1873}x+\frac{2085713640000}{3508129}=\frac{655000000}{1873}+\frac{2085713640000}{3508129}
Square -\frac{1444200}{1873} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2888400}{1873}x+\frac{2085713640000}{3508129}=\frac{3312528640000}{3508129}
Add \frac{655000000}{1873} to \frac{2085713640000}{3508129} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1444200}{1873}\right)^{2}=\frac{3312528640000}{3508129}
Factor x^{2}-\frac{2888400}{1873}x+\frac{2085713640000}{3508129}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1444200}{1873}\right)^{2}}=\sqrt{\frac{3312528640000}{3508129}}
Take the square root of both sides of the equation.
x-\frac{1444200}{1873}=\frac{800\sqrt{5175826}}{1873} x-\frac{1444200}{1873}=-\frac{800\sqrt{5175826}}{1873}
Simplify.
x=\frac{800\sqrt{5175826}+1444200}{1873} x=\frac{1444200-800\sqrt{5175826}}{1873}
Add \frac{1444200}{1873} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}