Solve for x
x=\frac{\sqrt{6873577}}{3780}+\frac{377}{756}\approx 1.192262103
x=-\frac{\sqrt{6873577}}{3780}+\frac{377}{756}\approx -0.194907606
Graph
Share
Copied to clipboard
-3.78x^{2}+3.77x+0.8784=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3.77±\sqrt{3.77^{2}-4\left(-3.78\right)\times 0.8784}}{2\left(-3.78\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3.78 for a, 3.77 for b, and 0.8784 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3.77±\sqrt{14.2129-4\left(-3.78\right)\times 0.8784}}{2\left(-3.78\right)}
Square 3.77 by squaring both the numerator and the denominator of the fraction.
x=\frac{-3.77±\sqrt{14.2129+15.12\times 0.8784}}{2\left(-3.78\right)}
Multiply -4 times -3.78.
x=\frac{-3.77±\sqrt{14.2129+13.281408}}{2\left(-3.78\right)}
Multiply 15.12 times 0.8784 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-3.77±\sqrt{27.494308}}{2\left(-3.78\right)}
Add 14.2129 to 13.281408 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-3.77±\frac{\sqrt{6873577}}{500}}{2\left(-3.78\right)}
Take the square root of 27.494308.
x=\frac{-3.77±\frac{\sqrt{6873577}}{500}}{-7.56}
Multiply 2 times -3.78.
x=\frac{\frac{\sqrt{6873577}}{500}-\frac{377}{100}}{-7.56}
Now solve the equation x=\frac{-3.77±\frac{\sqrt{6873577}}{500}}{-7.56} when ± is plus. Add -3.77 to \frac{\sqrt{6873577}}{500}.
x=-\frac{\sqrt{6873577}}{3780}+\frac{377}{756}
Divide -\frac{377}{100}+\frac{\sqrt{6873577}}{500} by -7.56 by multiplying -\frac{377}{100}+\frac{\sqrt{6873577}}{500} by the reciprocal of -7.56.
x=\frac{-\frac{\sqrt{6873577}}{500}-\frac{377}{100}}{-7.56}
Now solve the equation x=\frac{-3.77±\frac{\sqrt{6873577}}{500}}{-7.56} when ± is minus. Subtract \frac{\sqrt{6873577}}{500} from -3.77.
x=\frac{\sqrt{6873577}}{3780}+\frac{377}{756}
Divide -\frac{377}{100}-\frac{\sqrt{6873577}}{500} by -7.56 by multiplying -\frac{377}{100}-\frac{\sqrt{6873577}}{500} by the reciprocal of -7.56.
x=-\frac{\sqrt{6873577}}{3780}+\frac{377}{756} x=\frac{\sqrt{6873577}}{3780}+\frac{377}{756}
The equation is now solved.
-3.78x^{2}+3.77x+0.8784=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3.78x^{2}+3.77x+0.8784-0.8784=-0.8784
Subtract 0.8784 from both sides of the equation.
-3.78x^{2}+3.77x=-0.8784
Subtracting 0.8784 from itself leaves 0.
\frac{-3.78x^{2}+3.77x}{-3.78}=-\frac{0.8784}{-3.78}
Divide both sides of the equation by -3.78, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{3.77}{-3.78}x=-\frac{0.8784}{-3.78}
Dividing by -3.78 undoes the multiplication by -3.78.
x^{2}-\frac{377}{378}x=-\frac{0.8784}{-3.78}
Divide 3.77 by -3.78 by multiplying 3.77 by the reciprocal of -3.78.
x^{2}-\frac{377}{378}x=\frac{122}{525}
Divide -0.8784 by -3.78 by multiplying -0.8784 by the reciprocal of -3.78.
x^{2}-\frac{377}{378}x+\left(-\frac{377}{756}\right)^{2}=\frac{122}{525}+\left(-\frac{377}{756}\right)^{2}
Divide -\frac{377}{378}, the coefficient of the x term, by 2 to get -\frac{377}{756}. Then add the square of -\frac{377}{756} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{377}{378}x+\frac{142129}{571536}=\frac{122}{525}+\frac{142129}{571536}
Square -\frac{377}{756} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{377}{378}x+\frac{142129}{571536}=\frac{6873577}{14288400}
Add \frac{122}{525} to \frac{142129}{571536} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{377}{756}\right)^{2}=\frac{6873577}{14288400}
Factor x^{2}-\frac{377}{378}x+\frac{142129}{571536}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{377}{756}\right)^{2}}=\sqrt{\frac{6873577}{14288400}}
Take the square root of both sides of the equation.
x-\frac{377}{756}=\frac{\sqrt{6873577}}{3780} x-\frac{377}{756}=-\frac{\sqrt{6873577}}{3780}
Simplify.
x=\frac{\sqrt{6873577}}{3780}+\frac{377}{756} x=-\frac{\sqrt{6873577}}{3780}+\frac{377}{756}
Add \frac{377}{756} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}