Solve for y
y=-\frac{7}{15}\approx -0.466666667
Graph
Share
Copied to clipboard
-18y+9-y=-4\left(y-4\right)
Use the distributive property to multiply -3 by 6y-3.
-19y+9=-4\left(y-4\right)
Combine -18y and -y to get -19y.
-19y+9=-4y+16
Use the distributive property to multiply -4 by y-4.
-19y+9+4y=16
Add 4y to both sides.
-15y+9=16
Combine -19y and 4y to get -15y.
-15y=16-9
Subtract 9 from both sides.
-15y=7
Subtract 9 from 16 to get 7.
y=\frac{7}{-15}
Divide both sides by -15.
y=-\frac{7}{15}
Fraction \frac{7}{-15} can be rewritten as -\frac{7}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}