Evaluate
2\left(3\sqrt{3}-5\right)\approx 0.392304845
Share
Copied to clipboard
-3+2\sqrt{3}-\left(\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
-3+2\sqrt{3}-\left(6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
The square of \sqrt{6} is 6.
-3+2\sqrt{3}-\left(6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-3+2\sqrt{3}-\left(6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-3+2\sqrt{3}-\left(6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
Multiply -2 and 2 to get -4.
-3+2\sqrt{3}-\left(6-4\sqrt{3}+2\right)+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
The square of \sqrt{2} is 2.
-3+2\sqrt{3}-\left(8-4\sqrt{3}\right)+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
Add 6 and 2 to get 8.
-3+2\sqrt{3}-8+4\sqrt{3}+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
To find the opposite of 8-4\sqrt{3}, find the opposite of each term.
-11+2\sqrt{3}+4\sqrt{3}+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
Subtract 8 from -3 to get -11.
-11+6\sqrt{3}+\frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}
Combine 2\sqrt{3} and 4\sqrt{3} to get 6\sqrt{3}.
-11+6\sqrt{3}+\frac{5\sqrt{3}-\sqrt{48}}{\sqrt{3}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
-11+6\sqrt{3}+\frac{5\sqrt{3}-4\sqrt{3}}{\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
-11+6\sqrt{3}+\frac{\sqrt{3}}{\sqrt{3}}
Combine 5\sqrt{3} and -4\sqrt{3} to get \sqrt{3}.
-11+6\sqrt{3}+\sqrt{1}
Rewrite the division of square roots \frac{\sqrt{3}}{\sqrt{3}} as the square root of the division \sqrt{\frac{3}{3}} and perform the division.
-11+6\sqrt{3}+1
Calculate the square root of 1 and get 1.
-10+6\sqrt{3}
Add -11 and 1 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}