Solve for x
x = \frac{\sqrt{3} + 5}{3} \approx 2.244016936
x = \frac{5 - \sqrt{3}}{3} \approx 1.089316397
Graph
Share
Copied to clipboard
\left(3x-5\right)^{2}-3+3=3
Add 3 to both sides of the equation.
\left(3x-5\right)^{2}=3
Subtracting 3 from itself leaves 0.
3x-5=\sqrt{3} 3x-5=-\sqrt{3}
Take the square root of both sides of the equation.
3x-5-\left(-5\right)=\sqrt{3}-\left(-5\right) 3x-5-\left(-5\right)=-\sqrt{3}-\left(-5\right)
Add 5 to both sides of the equation.
3x=\sqrt{3}-\left(-5\right) 3x=-\sqrt{3}-\left(-5\right)
Subtracting -5 from itself leaves 0.
3x=\sqrt{3}+5
Subtract -5 from \sqrt{3}.
3x=5-\sqrt{3}
Subtract -5 from -\sqrt{3}.
\frac{3x}{3}=\frac{\sqrt{3}+5}{3} \frac{3x}{3}=\frac{5-\sqrt{3}}{3}
Divide both sides by 3.
x=\frac{\sqrt{3}+5}{3} x=\frac{5-\sqrt{3}}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}