Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-7x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\times 3}}{2\left(-3\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+12\times 3}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-7\right)±\sqrt{49+36}}{2\left(-3\right)}
Multiply 12 times 3.
x=\frac{-\left(-7\right)±\sqrt{85}}{2\left(-3\right)}
Add 49 to 36.
x=\frac{7±\sqrt{85}}{2\left(-3\right)}
The opposite of -7 is 7.
x=\frac{7±\sqrt{85}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{85}+7}{-6}
Now solve the equation x=\frac{7±\sqrt{85}}{-6} when ± is plus. Add 7 to \sqrt{85}.
x=\frac{-\sqrt{85}-7}{6}
Divide 7+\sqrt{85} by -6.
x=\frac{7-\sqrt{85}}{-6}
Now solve the equation x=\frac{7±\sqrt{85}}{-6} when ± is minus. Subtract \sqrt{85} from 7.
x=\frac{\sqrt{85}-7}{6}
Divide 7-\sqrt{85} by -6.
-3x^{2}-7x+3=-3\left(x-\frac{-\sqrt{85}-7}{6}\right)\left(x-\frac{\sqrt{85}-7}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7-\sqrt{85}}{6} for x_{1} and \frac{-7+\sqrt{85}}{6} for x_{2}.