Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-6x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)}}{2\left(-3\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-6\right)±\sqrt{48}}{2\left(-3\right)}
Add 36 to 12.
x=\frac{-\left(-6\right)±4\sqrt{3}}{2\left(-3\right)}
Take the square root of 48.
x=\frac{6±4\sqrt{3}}{2\left(-3\right)}
The opposite of -6 is 6.
x=\frac{6±4\sqrt{3}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{3}+6}{-6}
Now solve the equation x=\frac{6±4\sqrt{3}}{-6} when ± is plus. Add 6 to 4\sqrt{3}.
x=-\frac{2\sqrt{3}}{3}-1
Divide 6+4\sqrt{3} by -6.
x=\frac{6-4\sqrt{3}}{-6}
Now solve the equation x=\frac{6±4\sqrt{3}}{-6} when ± is minus. Subtract 4\sqrt{3} from 6.
x=\frac{2\sqrt{3}}{3}-1
Divide 6-4\sqrt{3} by -6.
-3x^{2}-6x+1=-3\left(x-\left(-\frac{2\sqrt{3}}{3}-1\right)\right)\left(x-\left(\frac{2\sqrt{3}}{3}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1-\frac{2\sqrt{3}}{3} for x_{1} and -1+\frac{2\sqrt{3}}{3} for x_{2}.