Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-44x-97-29=-5x
Subtract 29 from both sides.
-3x^{2}-44x-126=-5x
Subtract 29 from -97 to get -126.
-3x^{2}-44x-126+5x=0
Add 5x to both sides.
-3x^{2}-39x-126=0
Combine -44x and 5x to get -39x.
-x^{2}-13x-42=0
Divide both sides by 3.
a+b=-13 ab=-\left(-42\right)=42
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-42. To find a and b, set up a system to be solved.
-1,-42 -2,-21 -3,-14 -6,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 42.
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
Calculate the sum for each pair.
a=-6 b=-7
The solution is the pair that gives sum -13.
\left(-x^{2}-6x\right)+\left(-7x-42\right)
Rewrite -x^{2}-13x-42 as \left(-x^{2}-6x\right)+\left(-7x-42\right).
x\left(-x-6\right)+7\left(-x-6\right)
Factor out x in the first and 7 in the second group.
\left(-x-6\right)\left(x+7\right)
Factor out common term -x-6 by using distributive property.
x=-6 x=-7
To find equation solutions, solve -x-6=0 and x+7=0.
-3x^{2}-44x-97-29=-5x
Subtract 29 from both sides.
-3x^{2}-44x-126=-5x
Subtract 29 from -97 to get -126.
-3x^{2}-44x-126+5x=0
Add 5x to both sides.
-3x^{2}-39x-126=0
Combine -44x and 5x to get -39x.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\left(-3\right)\left(-126\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -39 for b, and -126 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-39\right)±\sqrt{1521-4\left(-3\right)\left(-126\right)}}{2\left(-3\right)}
Square -39.
x=\frac{-\left(-39\right)±\sqrt{1521+12\left(-126\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-39\right)±\sqrt{1521-1512}}{2\left(-3\right)}
Multiply 12 times -126.
x=\frac{-\left(-39\right)±\sqrt{9}}{2\left(-3\right)}
Add 1521 to -1512.
x=\frac{-\left(-39\right)±3}{2\left(-3\right)}
Take the square root of 9.
x=\frac{39±3}{2\left(-3\right)}
The opposite of -39 is 39.
x=\frac{39±3}{-6}
Multiply 2 times -3.
x=\frac{42}{-6}
Now solve the equation x=\frac{39±3}{-6} when ± is plus. Add 39 to 3.
x=-7
Divide 42 by -6.
x=\frac{36}{-6}
Now solve the equation x=\frac{39±3}{-6} when ± is minus. Subtract 3 from 39.
x=-6
Divide 36 by -6.
x=-7 x=-6
The equation is now solved.
-3x^{2}-44x-97+5x=29
Add 5x to both sides.
-3x^{2}-39x-97=29
Combine -44x and 5x to get -39x.
-3x^{2}-39x=29+97
Add 97 to both sides.
-3x^{2}-39x=126
Add 29 and 97 to get 126.
\frac{-3x^{2}-39x}{-3}=\frac{126}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{39}{-3}\right)x=\frac{126}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+13x=\frac{126}{-3}
Divide -39 by -3.
x^{2}+13x=-42
Divide 126 by -3.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=-42+\left(\frac{13}{2}\right)^{2}
Divide 13, the coefficient of the x term, by 2 to get \frac{13}{2}. Then add the square of \frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+13x+\frac{169}{4}=-42+\frac{169}{4}
Square \frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+13x+\frac{169}{4}=\frac{1}{4}
Add -42 to \frac{169}{4}.
\left(x+\frac{13}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}+13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{13}{2}=\frac{1}{2} x+\frac{13}{2}=-\frac{1}{2}
Simplify.
x=-6 x=-7
Subtract \frac{13}{2} from both sides of the equation.