Factor
-3\left(x+4\right)\left(x+6\right)
Evaluate
-3\left(x+4\right)\left(x+6\right)
Graph
Share
Copied to clipboard
3\left(-x^{2}-10x-24\right)
Factor out 3.
a+b=-10 ab=-\left(-24\right)=24
Consider -x^{2}-10x-24. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-24. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-4 b=-6
The solution is the pair that gives sum -10.
\left(-x^{2}-4x\right)+\left(-6x-24\right)
Rewrite -x^{2}-10x-24 as \left(-x^{2}-4x\right)+\left(-6x-24\right).
x\left(-x-4\right)+6\left(-x-4\right)
Factor out x in the first and 6 in the second group.
\left(-x-4\right)\left(x+6\right)
Factor out common term -x-4 by using distributive property.
3\left(-x-4\right)\left(x+6\right)
Rewrite the complete factored expression.
-3x^{2}-30x-72=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{900-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900+12\left(-72\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-30\right)±\sqrt{900-864}}{2\left(-3\right)}
Multiply 12 times -72.
x=\frac{-\left(-30\right)±\sqrt{36}}{2\left(-3\right)}
Add 900 to -864.
x=\frac{-\left(-30\right)±6}{2\left(-3\right)}
Take the square root of 36.
x=\frac{30±6}{2\left(-3\right)}
The opposite of -30 is 30.
x=\frac{30±6}{-6}
Multiply 2 times -3.
x=\frac{36}{-6}
Now solve the equation x=\frac{30±6}{-6} when ± is plus. Add 30 to 6.
x=-6
Divide 36 by -6.
x=\frac{24}{-6}
Now solve the equation x=\frac{30±6}{-6} when ± is minus. Subtract 6 from 30.
x=-4
Divide 24 by -6.
-3x^{2}-30x-72=-3\left(x-\left(-6\right)\right)\left(x-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6 for x_{1} and -4 for x_{2}.
-3x^{2}-30x-72=-3\left(x+6\right)\left(x+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}