Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-24x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-3\right)\times 5}}{2\left(-3\right)}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576+12\times 5}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-24\right)±\sqrt{576+60}}{2\left(-3\right)}
Multiply 12 times 5.
x=\frac{-\left(-24\right)±\sqrt{636}}{2\left(-3\right)}
Add 576 to 60.
x=\frac{-\left(-24\right)±2\sqrt{159}}{2\left(-3\right)}
Take the square root of 636.
x=\frac{24±2\sqrt{159}}{2\left(-3\right)}
The opposite of -24 is 24.
x=\frac{24±2\sqrt{159}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{159}+24}{-6}
Now solve the equation x=\frac{24±2\sqrt{159}}{-6} when ± is plus. Add 24 to 2\sqrt{159}.
x=-\frac{\sqrt{159}}{3}-4
Divide 24+2\sqrt{159} by -6.
x=\frac{24-2\sqrt{159}}{-6}
Now solve the equation x=\frac{24±2\sqrt{159}}{-6} when ± is minus. Subtract 2\sqrt{159} from 24.
x=\frac{\sqrt{159}}{3}-4
Divide 24-2\sqrt{159} by -6.
-3x^{2}-24x+5=-3\left(x-\left(-\frac{\sqrt{159}}{3}-4\right)\right)\left(x-\left(\frac{\sqrt{159}}{3}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4-\frac{\sqrt{159}}{3} for x_{1} and -4+\frac{\sqrt{159}}{3} for x_{2}.