Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-18x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -18 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-3\right)\times 12}}{2\left(-3\right)}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324+12\times 12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-18\right)±\sqrt{324+144}}{2\left(-3\right)}
Multiply 12 times 12.
x=\frac{-\left(-18\right)±\sqrt{468}}{2\left(-3\right)}
Add 324 to 144.
x=\frac{-\left(-18\right)±6\sqrt{13}}{2\left(-3\right)}
Take the square root of 468.
x=\frac{18±6\sqrt{13}}{2\left(-3\right)}
The opposite of -18 is 18.
x=\frac{18±6\sqrt{13}}{-6}
Multiply 2 times -3.
x=\frac{6\sqrt{13}+18}{-6}
Now solve the equation x=\frac{18±6\sqrt{13}}{-6} when ± is plus. Add 18 to 6\sqrt{13}.
x=-\left(\sqrt{13}+3\right)
Divide 18+6\sqrt{13} by -6.
x=\frac{18-6\sqrt{13}}{-6}
Now solve the equation x=\frac{18±6\sqrt{13}}{-6} when ± is minus. Subtract 6\sqrt{13} from 18.
x=\sqrt{13}-3
Divide 18-6\sqrt{13} by -6.
x=-\left(\sqrt{13}+3\right) x=\sqrt{13}-3
The equation is now solved.
-3x^{2}-18x+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}-18x+12-12=-12
Subtract 12 from both sides of the equation.
-3x^{2}-18x=-12
Subtracting 12 from itself leaves 0.
\frac{-3x^{2}-18x}{-3}=-\frac{12}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{18}{-3}\right)x=-\frac{12}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+6x=-\frac{12}{-3}
Divide -18 by -3.
x^{2}+6x=4
Divide -12 by -3.
x^{2}+6x+3^{2}=4+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=4+9
Square 3.
x^{2}+6x+9=13
Add 4 to 9.
\left(x+3\right)^{2}=13
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x+3=\sqrt{13} x+3=-\sqrt{13}
Simplify.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Subtract 3 from both sides of the equation.
-3x^{2}-18x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -18 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-3\right)\times 12}}{2\left(-3\right)}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324+12\times 12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-18\right)±\sqrt{324+144}}{2\left(-3\right)}
Multiply 12 times 12.
x=\frac{-\left(-18\right)±\sqrt{468}}{2\left(-3\right)}
Add 324 to 144.
x=\frac{-\left(-18\right)±6\sqrt{13}}{2\left(-3\right)}
Take the square root of 468.
x=\frac{18±6\sqrt{13}}{2\left(-3\right)}
The opposite of -18 is 18.
x=\frac{18±6\sqrt{13}}{-6}
Multiply 2 times -3.
x=\frac{6\sqrt{13}+18}{-6}
Now solve the equation x=\frac{18±6\sqrt{13}}{-6} when ± is plus. Add 18 to 6\sqrt{13}.
x=-\left(\sqrt{13}+3\right)
Divide 18+6\sqrt{13} by -6.
x=\frac{18-6\sqrt{13}}{-6}
Now solve the equation x=\frac{18±6\sqrt{13}}{-6} when ± is minus. Subtract 6\sqrt{13} from 18.
x=\sqrt{13}-3
Divide 18-6\sqrt{13} by -6.
x=-\left(\sqrt{13}+3\right) x=\sqrt{13}-3
The equation is now solved.
-3x^{2}-18x+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}-18x+12-12=-12
Subtract 12 from both sides of the equation.
-3x^{2}-18x=-12
Subtracting 12 from itself leaves 0.
\frac{-3x^{2}-18x}{-3}=-\frac{12}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{18}{-3}\right)x=-\frac{12}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+6x=-\frac{12}{-3}
Divide -18 by -3.
x^{2}+6x=4
Divide -12 by -3.
x^{2}+6x+3^{2}=4+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=4+9
Square 3.
x^{2}+6x+9=13
Add 4 to 9.
\left(x+3\right)^{2}=13
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x+3=\sqrt{13} x+3=-\sqrt{13}
Simplify.
x=\sqrt{13}-3 x=-\sqrt{13}-3
Subtract 3 from both sides of the equation.