Factor
\left(1-x\right)\left(3x-5\right)
Evaluate
\left(1-x\right)\left(3x-5\right)
Graph
Share
Copied to clipboard
a+b=8 ab=-3\left(-5\right)=15
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=5 b=3
The solution is the pair that gives sum 8.
\left(-3x^{2}+5x\right)+\left(3x-5\right)
Rewrite -3x^{2}+8x-5 as \left(-3x^{2}+5x\right)+\left(3x-5\right).
-x\left(3x-5\right)+3x-5
Factor out -x in -3x^{2}+5x.
\left(3x-5\right)\left(-x+1\right)
Factor out common term 3x-5 by using distributive property.
-3x^{2}+8x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
Square 8.
x=\frac{-8±\sqrt{64+12\left(-5\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-8±\sqrt{64-60}}{2\left(-3\right)}
Multiply 12 times -5.
x=\frac{-8±\sqrt{4}}{2\left(-3\right)}
Add 64 to -60.
x=\frac{-8±2}{2\left(-3\right)}
Take the square root of 4.
x=\frac{-8±2}{-6}
Multiply 2 times -3.
x=-\frac{6}{-6}
Now solve the equation x=\frac{-8±2}{-6} when ± is plus. Add -8 to 2.
x=1
Divide -6 by -6.
x=-\frac{10}{-6}
Now solve the equation x=\frac{-8±2}{-6} when ± is minus. Subtract 2 from -8.
x=\frac{5}{3}
Reduce the fraction \frac{-10}{-6} to lowest terms by extracting and canceling out 2.
-3x^{2}+8x-5=-3\left(x-1\right)\left(x-\frac{5}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and \frac{5}{3} for x_{2}.
-3x^{2}+8x-5=-3\left(x-1\right)\times \frac{-3x+5}{-3}
Subtract \frac{5}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-3x^{2}+8x-5=\left(x-1\right)\left(-3x+5\right)
Cancel out 3, the greatest common factor in -3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}