Solve for x
x=\frac{\sqrt{36210}}{3}+68\approx 131.429751169
x=-\frac{\sqrt{36210}}{3}+68\approx 4.570248831
Graph
Share
Copied to clipboard
-3x^{2}+408x-1800=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+408x-1800-2=2-2
Subtract 2 from both sides of the equation.
-3x^{2}+408x-1800-2=0
Subtracting 2 from itself leaves 0.
-3x^{2}+408x-1802=0
Subtract 2 from -1800.
x=\frac{-408±\sqrt{408^{2}-4\left(-3\right)\left(-1802\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 408 for b, and -1802 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-408±\sqrt{166464-4\left(-3\right)\left(-1802\right)}}{2\left(-3\right)}
Square 408.
x=\frac{-408±\sqrt{166464+12\left(-1802\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-408±\sqrt{166464-21624}}{2\left(-3\right)}
Multiply 12 times -1802.
x=\frac{-408±\sqrt{144840}}{2\left(-3\right)}
Add 166464 to -21624.
x=\frac{-408±2\sqrt{36210}}{2\left(-3\right)}
Take the square root of 144840.
x=\frac{-408±2\sqrt{36210}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{36210}-408}{-6}
Now solve the equation x=\frac{-408±2\sqrt{36210}}{-6} when ± is plus. Add -408 to 2\sqrt{36210}.
x=-\frac{\sqrt{36210}}{3}+68
Divide -408+2\sqrt{36210} by -6.
x=\frac{-2\sqrt{36210}-408}{-6}
Now solve the equation x=\frac{-408±2\sqrt{36210}}{-6} when ± is minus. Subtract 2\sqrt{36210} from -408.
x=\frac{\sqrt{36210}}{3}+68
Divide -408-2\sqrt{36210} by -6.
x=-\frac{\sqrt{36210}}{3}+68 x=\frac{\sqrt{36210}}{3}+68
The equation is now solved.
-3x^{2}+408x-1800=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+408x-1800-\left(-1800\right)=2-\left(-1800\right)
Add 1800 to both sides of the equation.
-3x^{2}+408x=2-\left(-1800\right)
Subtracting -1800 from itself leaves 0.
-3x^{2}+408x=1802
Subtract -1800 from 2.
\frac{-3x^{2}+408x}{-3}=\frac{1802}{-3}
Divide both sides by -3.
x^{2}+\frac{408}{-3}x=\frac{1802}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-136x=\frac{1802}{-3}
Divide 408 by -3.
x^{2}-136x=-\frac{1802}{3}
Divide 1802 by -3.
x^{2}-136x+\left(-68\right)^{2}=-\frac{1802}{3}+\left(-68\right)^{2}
Divide -136, the coefficient of the x term, by 2 to get -68. Then add the square of -68 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-136x+4624=-\frac{1802}{3}+4624
Square -68.
x^{2}-136x+4624=\frac{12070}{3}
Add -\frac{1802}{3} to 4624.
\left(x-68\right)^{2}=\frac{12070}{3}
Factor x^{2}-136x+4624. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-68\right)^{2}}=\sqrt{\frac{12070}{3}}
Take the square root of both sides of the equation.
x-68=\frac{\sqrt{36210}}{3} x-68=-\frac{\sqrt{36210}}{3}
Simplify.
x=\frac{\sqrt{36210}}{3}+68 x=-\frac{\sqrt{36210}}{3}+68
Add 68 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}