Solve for x
x = \frac{\sqrt{313} + 14}{3} \approx 10.563935338
x=\frac{14-\sqrt{313}}{3}\approx -1.230602004
Graph
Share
Copied to clipboard
-3x^{2}+28x+39=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\left(-3\right)\times 39}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 28 for b, and 39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-3\right)\times 39}}{2\left(-3\right)}
Square 28.
x=\frac{-28±\sqrt{784+12\times 39}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-28±\sqrt{784+468}}{2\left(-3\right)}
Multiply 12 times 39.
x=\frac{-28±\sqrt{1252}}{2\left(-3\right)}
Add 784 to 468.
x=\frac{-28±2\sqrt{313}}{2\left(-3\right)}
Take the square root of 1252.
x=\frac{-28±2\sqrt{313}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{313}-28}{-6}
Now solve the equation x=\frac{-28±2\sqrt{313}}{-6} when ± is plus. Add -28 to 2\sqrt{313}.
x=\frac{14-\sqrt{313}}{3}
Divide -28+2\sqrt{313} by -6.
x=\frac{-2\sqrt{313}-28}{-6}
Now solve the equation x=\frac{-28±2\sqrt{313}}{-6} when ± is minus. Subtract 2\sqrt{313} from -28.
x=\frac{\sqrt{313}+14}{3}
Divide -28-2\sqrt{313} by -6.
x=\frac{14-\sqrt{313}}{3} x=\frac{\sqrt{313}+14}{3}
The equation is now solved.
-3x^{2}+28x+39=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+28x+39-39=-39
Subtract 39 from both sides of the equation.
-3x^{2}+28x=-39
Subtracting 39 from itself leaves 0.
\frac{-3x^{2}+28x}{-3}=-\frac{39}{-3}
Divide both sides by -3.
x^{2}+\frac{28}{-3}x=-\frac{39}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{28}{3}x=-\frac{39}{-3}
Divide 28 by -3.
x^{2}-\frac{28}{3}x=13
Divide -39 by -3.
x^{2}-\frac{28}{3}x+\left(-\frac{14}{3}\right)^{2}=13+\left(-\frac{14}{3}\right)^{2}
Divide -\frac{28}{3}, the coefficient of the x term, by 2 to get -\frac{14}{3}. Then add the square of -\frac{14}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{28}{3}x+\frac{196}{9}=13+\frac{196}{9}
Square -\frac{14}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{28}{3}x+\frac{196}{9}=\frac{313}{9}
Add 13 to \frac{196}{9}.
\left(x-\frac{14}{3}\right)^{2}=\frac{313}{9}
Factor x^{2}-\frac{28}{3}x+\frac{196}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{3}\right)^{2}}=\sqrt{\frac{313}{9}}
Take the square root of both sides of the equation.
x-\frac{14}{3}=\frac{\sqrt{313}}{3} x-\frac{14}{3}=-\frac{\sqrt{313}}{3}
Simplify.
x=\frac{\sqrt{313}+14}{3} x=\frac{14-\sqrt{313}}{3}
Add \frac{14}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}