Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+17x-10=0
Subtract 10 from both sides.
a+b=17 ab=-3\left(-10\right)=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,30 2,15 3,10 5,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calculate the sum for each pair.
a=15 b=2
The solution is the pair that gives sum 17.
\left(-3x^{2}+15x\right)+\left(2x-10\right)
Rewrite -3x^{2}+17x-10 as \left(-3x^{2}+15x\right)+\left(2x-10\right).
3x\left(-x+5\right)-2\left(-x+5\right)
Factor out 3x in the first and -2 in the second group.
\left(-x+5\right)\left(3x-2\right)
Factor out common term -x+5 by using distributive property.
x=5 x=\frac{2}{3}
To find equation solutions, solve -x+5=0 and 3x-2=0.
-3x^{2}+17x=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+17x-10=10-10
Subtract 10 from both sides of the equation.
-3x^{2}+17x-10=0
Subtracting 10 from itself leaves 0.
x=\frac{-17±\sqrt{17^{2}-4\left(-3\right)\left(-10\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 17 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-3\right)\left(-10\right)}}{2\left(-3\right)}
Square 17.
x=\frac{-17±\sqrt{289+12\left(-10\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-17±\sqrt{289-120}}{2\left(-3\right)}
Multiply 12 times -10.
x=\frac{-17±\sqrt{169}}{2\left(-3\right)}
Add 289 to -120.
x=\frac{-17±13}{2\left(-3\right)}
Take the square root of 169.
x=\frac{-17±13}{-6}
Multiply 2 times -3.
x=-\frac{4}{-6}
Now solve the equation x=\frac{-17±13}{-6} when ± is plus. Add -17 to 13.
x=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{-6}
Now solve the equation x=\frac{-17±13}{-6} when ± is minus. Subtract 13 from -17.
x=5
Divide -30 by -6.
x=\frac{2}{3} x=5
The equation is now solved.
-3x^{2}+17x=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+17x}{-3}=\frac{10}{-3}
Divide both sides by -3.
x^{2}+\frac{17}{-3}x=\frac{10}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{17}{3}x=\frac{10}{-3}
Divide 17 by -3.
x^{2}-\frac{17}{3}x=-\frac{10}{3}
Divide 10 by -3.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-\frac{10}{3}+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-\frac{10}{3}+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{169}{36}
Add -\frac{10}{3} to \frac{289}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{6}\right)^{2}=\frac{169}{36}
Factor x^{2}-\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
Take the square root of both sides of the equation.
x-\frac{17}{6}=\frac{13}{6} x-\frac{17}{6}=-\frac{13}{6}
Simplify.
x=5 x=\frac{2}{3}
Add \frac{17}{6} to both sides of the equation.