Solve for x
x = \frac{\sqrt{349} + 17}{6} \approx 5.946923615
x=\frac{17-\sqrt{349}}{6}\approx -0.280256949
Graph
Share
Copied to clipboard
-3x^{2}+17x=-5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+17x-\left(-5\right)=-5-\left(-5\right)
Add 5 to both sides of the equation.
-3x^{2}+17x-\left(-5\right)=0
Subtracting -5 from itself leaves 0.
-3x^{2}+17x+5=0
Subtract -5 from 0.
x=\frac{-17±\sqrt{17^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 17 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-3\right)\times 5}}{2\left(-3\right)}
Square 17.
x=\frac{-17±\sqrt{289+12\times 5}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-17±\sqrt{289+60}}{2\left(-3\right)}
Multiply 12 times 5.
x=\frac{-17±\sqrt{349}}{2\left(-3\right)}
Add 289 to 60.
x=\frac{-17±\sqrt{349}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{349}-17}{-6}
Now solve the equation x=\frac{-17±\sqrt{349}}{-6} when ± is plus. Add -17 to \sqrt{349}.
x=\frac{17-\sqrt{349}}{6}
Divide -17+\sqrt{349} by -6.
x=\frac{-\sqrt{349}-17}{-6}
Now solve the equation x=\frac{-17±\sqrt{349}}{-6} when ± is minus. Subtract \sqrt{349} from -17.
x=\frac{\sqrt{349}+17}{6}
Divide -17-\sqrt{349} by -6.
x=\frac{17-\sqrt{349}}{6} x=\frac{\sqrt{349}+17}{6}
The equation is now solved.
-3x^{2}+17x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+17x}{-3}=-\frac{5}{-3}
Divide both sides by -3.
x^{2}+\frac{17}{-3}x=-\frac{5}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{17}{3}x=-\frac{5}{-3}
Divide 17 by -3.
x^{2}-\frac{17}{3}x=\frac{5}{3}
Divide -5 by -3.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=\frac{5}{3}+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{5}{3}+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{349}{36}
Add \frac{5}{3} to \frac{289}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{6}\right)^{2}=\frac{349}{36}
Factor x^{2}-\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{349}{36}}
Take the square root of both sides of the equation.
x-\frac{17}{6}=\frac{\sqrt{349}}{6} x-\frac{17}{6}=-\frac{\sqrt{349}}{6}
Simplify.
x=\frac{\sqrt{349}+17}{6} x=\frac{17-\sqrt{349}}{6}
Add \frac{17}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}