Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+12x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-6\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-6\right)}}{2\left(-3\right)}
Square 12.
x=\frac{-12±\sqrt{144+12\left(-6\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-12±\sqrt{144-72}}{2\left(-3\right)}
Multiply 12 times -6.
x=\frac{-12±\sqrt{72}}{2\left(-3\right)}
Add 144 to -72.
x=\frac{-12±6\sqrt{2}}{2\left(-3\right)}
Take the square root of 72.
x=\frac{-12±6\sqrt{2}}{-6}
Multiply 2 times -3.
x=\frac{6\sqrt{2}-12}{-6}
Now solve the equation x=\frac{-12±6\sqrt{2}}{-6} when ± is plus. Add -12 to 6\sqrt{2}.
x=2-\sqrt{2}
Divide -12+6\sqrt{2} by -6.
x=\frac{-6\sqrt{2}-12}{-6}
Now solve the equation x=\frac{-12±6\sqrt{2}}{-6} when ± is minus. Subtract 6\sqrt{2} from -12.
x=\sqrt{2}+2
Divide -12-6\sqrt{2} by -6.
-3x^{2}+12x-6=-3\left(x-\left(2-\sqrt{2}\right)\right)\left(x-\left(\sqrt{2}+2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2-\sqrt{2} for x_{1} and 2+\sqrt{2} for x_{2}.