Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+117x-900=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-117±\sqrt{117^{2}-4\left(-3\right)\left(-900\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-117±\sqrt{13689-4\left(-3\right)\left(-900\right)}}{2\left(-3\right)}
Square 117.
x=\frac{-117±\sqrt{13689+12\left(-900\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-117±\sqrt{13689-10800}}{2\left(-3\right)}
Multiply 12 times -900.
x=\frac{-117±\sqrt{2889}}{2\left(-3\right)}
Add 13689 to -10800.
x=\frac{-117±3\sqrt{321}}{2\left(-3\right)}
Take the square root of 2889.
x=\frac{-117±3\sqrt{321}}{-6}
Multiply 2 times -3.
x=\frac{3\sqrt{321}-117}{-6}
Now solve the equation x=\frac{-117±3\sqrt{321}}{-6} when ± is plus. Add -117 to 3\sqrt{321}.
x=\frac{39-\sqrt{321}}{2}
Divide -117+3\sqrt{321} by -6.
x=\frac{-3\sqrt{321}-117}{-6}
Now solve the equation x=\frac{-117±3\sqrt{321}}{-6} when ± is minus. Subtract 3\sqrt{321} from -117.
x=\frac{\sqrt{321}+39}{2}
Divide -117-3\sqrt{321} by -6.
-3x^{2}+117x-900=-3\left(x-\frac{39-\sqrt{321}}{2}\right)\left(x-\frac{\sqrt{321}+39}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{39-\sqrt{321}}{2} for x_{1} and \frac{39+\sqrt{321}}{2} for x_{2}.