Solve for p
p=\frac{10\sqrt{3606}}{3}-50\approx 150.16659728
p=-\frac{10\sqrt{3606}}{3}-50\approx -250.16659728
Share
Copied to clipboard
-3p^{2}-300p+112700=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\left(-3\right)\times 112700}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -300 for b, and 112700 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-300\right)±\sqrt{90000-4\left(-3\right)\times 112700}}{2\left(-3\right)}
Square -300.
p=\frac{-\left(-300\right)±\sqrt{90000+12\times 112700}}{2\left(-3\right)}
Multiply -4 times -3.
p=\frac{-\left(-300\right)±\sqrt{90000+1352400}}{2\left(-3\right)}
Multiply 12 times 112700.
p=\frac{-\left(-300\right)±\sqrt{1442400}}{2\left(-3\right)}
Add 90000 to 1352400.
p=\frac{-\left(-300\right)±20\sqrt{3606}}{2\left(-3\right)}
Take the square root of 1442400.
p=\frac{300±20\sqrt{3606}}{2\left(-3\right)}
The opposite of -300 is 300.
p=\frac{300±20\sqrt{3606}}{-6}
Multiply 2 times -3.
p=\frac{20\sqrt{3606}+300}{-6}
Now solve the equation p=\frac{300±20\sqrt{3606}}{-6} when ± is plus. Add 300 to 20\sqrt{3606}.
p=-\frac{10\sqrt{3606}}{3}-50
Divide 300+20\sqrt{3606} by -6.
p=\frac{300-20\sqrt{3606}}{-6}
Now solve the equation p=\frac{300±20\sqrt{3606}}{-6} when ± is minus. Subtract 20\sqrt{3606} from 300.
p=\frac{10\sqrt{3606}}{3}-50
Divide 300-20\sqrt{3606} by -6.
p=-\frac{10\sqrt{3606}}{3}-50 p=\frac{10\sqrt{3606}}{3}-50
The equation is now solved.
-3p^{2}-300p+112700=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3p^{2}-300p+112700-112700=-112700
Subtract 112700 from both sides of the equation.
-3p^{2}-300p=-112700
Subtracting 112700 from itself leaves 0.
\frac{-3p^{2}-300p}{-3}=-\frac{112700}{-3}
Divide both sides by -3.
p^{2}+\left(-\frac{300}{-3}\right)p=-\frac{112700}{-3}
Dividing by -3 undoes the multiplication by -3.
p^{2}+100p=-\frac{112700}{-3}
Divide -300 by -3.
p^{2}+100p=\frac{112700}{3}
Divide -112700 by -3.
p^{2}+100p+50^{2}=\frac{112700}{3}+50^{2}
Divide 100, the coefficient of the x term, by 2 to get 50. Then add the square of 50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+100p+2500=\frac{112700}{3}+2500
Square 50.
p^{2}+100p+2500=\frac{120200}{3}
Add \frac{112700}{3} to 2500.
\left(p+50\right)^{2}=\frac{120200}{3}
Factor p^{2}+100p+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+50\right)^{2}}=\sqrt{\frac{120200}{3}}
Take the square root of both sides of the equation.
p+50=\frac{10\sqrt{3606}}{3} p+50=-\frac{10\sqrt{3606}}{3}
Simplify.
p=\frac{10\sqrt{3606}}{3}-50 p=-\frac{10\sqrt{3606}}{3}-50
Subtract 50 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}