Solve for x
x = -\frac{100000000000000}{643076643} = -155502\frac{295860214}{643076643} \approx -155502.460069911
x=0
Graph
Share
Copied to clipboard
-3\times \frac{1}{100000000000000}x^{2}-11^{-8}x=0
Calculate 10 to the power of -14 and get \frac{1}{100000000000000}.
-\frac{3}{100000000000000}x^{2}-11^{-8}x=0
Multiply -3 and \frac{1}{100000000000000} to get -\frac{3}{100000000000000}.
-\frac{3}{100000000000000}x^{2}-\frac{1}{214358881}x=0
Calculate 11 to the power of -8 and get \frac{1}{214358881}.
x\left(-\frac{3}{100000000000000}x-\frac{1}{214358881}\right)=0
Factor out x.
x=0 x=-\frac{100000000000000}{643076643}
To find equation solutions, solve x=0 and -\frac{3x}{100000000000000}-\frac{1}{214358881}=0.
-3\times \frac{1}{100000000000000}x^{2}-11^{-8}x=0
Calculate 10 to the power of -14 and get \frac{1}{100000000000000}.
-\frac{3}{100000000000000}x^{2}-11^{-8}x=0
Multiply -3 and \frac{1}{100000000000000} to get -\frac{3}{100000000000000}.
-\frac{3}{100000000000000}x^{2}-\frac{1}{214358881}x=0
Calculate 11 to the power of -8 and get \frac{1}{214358881}.
x=\frac{-\left(-\frac{1}{214358881}\right)±\sqrt{\left(-\frac{1}{214358881}\right)^{2}}}{2\left(-\frac{3}{100000000000000}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{100000000000000} for a, -\frac{1}{214358881} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{214358881}\right)±\frac{1}{214358881}}{2\left(-\frac{3}{100000000000000}\right)}
Take the square root of \left(-\frac{1}{214358881}\right)^{2}.
x=\frac{\frac{1}{214358881}±\frac{1}{214358881}}{2\left(-\frac{3}{100000000000000}\right)}
The opposite of -\frac{1}{214358881} is \frac{1}{214358881}.
x=\frac{\frac{1}{214358881}±\frac{1}{214358881}}{-\frac{3}{50000000000000}}
Multiply 2 times -\frac{3}{100000000000000}.
x=\frac{\frac{2}{214358881}}{-\frac{3}{50000000000000}}
Now solve the equation x=\frac{\frac{1}{214358881}±\frac{1}{214358881}}{-\frac{3}{50000000000000}} when ± is plus. Add \frac{1}{214358881} to \frac{1}{214358881} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{100000000000000}{643076643}
Divide \frac{2}{214358881} by -\frac{3}{50000000000000} by multiplying \frac{2}{214358881} by the reciprocal of -\frac{3}{50000000000000}.
x=\frac{0}{-\frac{3}{50000000000000}}
Now solve the equation x=\frac{\frac{1}{214358881}±\frac{1}{214358881}}{-\frac{3}{50000000000000}} when ± is minus. Subtract \frac{1}{214358881} from \frac{1}{214358881} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -\frac{3}{50000000000000} by multiplying 0 by the reciprocal of -\frac{3}{50000000000000}.
x=-\frac{100000000000000}{643076643} x=0
The equation is now solved.
-3\times \frac{1}{100000000000000}x^{2}-11^{-8}x=0
Calculate 10 to the power of -14 and get \frac{1}{100000000000000}.
-\frac{3}{100000000000000}x^{2}-11^{-8}x=0
Multiply -3 and \frac{1}{100000000000000} to get -\frac{3}{100000000000000}.
-\frac{3}{100000000000000}x^{2}-\frac{1}{214358881}x=0
Calculate 11 to the power of -8 and get \frac{1}{214358881}.
\frac{-\frac{3}{100000000000000}x^{2}-\frac{1}{214358881}x}{-\frac{3}{100000000000000}}=\frac{0}{-\frac{3}{100000000000000}}
Divide both sides of the equation by -\frac{3}{100000000000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{1}{214358881}}{-\frac{3}{100000000000000}}\right)x=\frac{0}{-\frac{3}{100000000000000}}
Dividing by -\frac{3}{100000000000000} undoes the multiplication by -\frac{3}{100000000000000}.
x^{2}+\frac{100000000000000}{643076643}x=\frac{0}{-\frac{3}{100000000000000}}
Divide -\frac{1}{214358881} by -\frac{3}{100000000000000} by multiplying -\frac{1}{214358881} by the reciprocal of -\frac{3}{100000000000000}.
x^{2}+\frac{100000000000000}{643076643}x=0
Divide 0 by -\frac{3}{100000000000000} by multiplying 0 by the reciprocal of -\frac{3}{100000000000000}.
x^{2}+\frac{100000000000000}{643076643}x+\left(\frac{50000000000000}{643076643}\right)^{2}=\left(\frac{50000000000000}{643076643}\right)^{2}
Divide \frac{100000000000000}{643076643}, the coefficient of the x term, by 2 to get \frac{50000000000000}{643076643}. Then add the square of \frac{50000000000000}{643076643} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{100000000000000}{643076643}x+\frac{2500000000000000000000000000}{413547568772149449}=\frac{2500000000000000000000000000}{413547568772149449}
Square \frac{50000000000000}{643076643} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{50000000000000}{643076643}\right)^{2}=\frac{2500000000000000000000000000}{413547568772149449}
Factor x^{2}+\frac{100000000000000}{643076643}x+\frac{2500000000000000000000000000}{413547568772149449}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{50000000000000}{643076643}\right)^{2}}=\sqrt{\frac{2500000000000000000000000000}{413547568772149449}}
Take the square root of both sides of the equation.
x+\frac{50000000000000}{643076643}=\frac{50000000000000}{643076643} x+\frac{50000000000000}{643076643}=-\frac{50000000000000}{643076643}
Simplify.
x=0 x=-\frac{100000000000000}{643076643}
Subtract \frac{50000000000000}{643076643} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}