Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-x+x^{2}\right)
Factor out 2.
x\left(-1+x\right)
Consider -x+x^{2}. Factor out x.
2x\left(x-1\right)
Rewrite the complete factored expression.
2x^{2}-2x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±2}{2\times 2}
Take the square root of \left(-2\right)^{2}.
x=\frac{2±2}{2\times 2}
The opposite of -2 is 2.
x=\frac{2±2}{4}
Multiply 2 times 2.
x=\frac{4}{4}
Now solve the equation x=\frac{2±2}{4} when ± is plus. Add 2 to 2.
x=1
Divide 4 by 4.
x=\frac{0}{4}
Now solve the equation x=\frac{2±2}{4} when ± is minus. Subtract 2 from 2.
x=0
Divide 0 by 4.
2x^{2}-2x=2\left(x-1\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and 0 for x_{2}.