Factor
\left(20-x\right)\left(x-140\right)
Evaluate
\left(20-x\right)\left(x-140\right)
Graph
Share
Copied to clipboard
-x^{2}+160x-2800
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=160 ab=-\left(-2800\right)=2800
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-2800. To find a and b, set up a system to be solved.
1,2800 2,1400 4,700 5,560 7,400 8,350 10,280 14,200 16,175 20,140 25,112 28,100 35,80 40,70 50,56
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 2800.
1+2800=2801 2+1400=1402 4+700=704 5+560=565 7+400=407 8+350=358 10+280=290 14+200=214 16+175=191 20+140=160 25+112=137 28+100=128 35+80=115 40+70=110 50+56=106
Calculate the sum for each pair.
a=140 b=20
The solution is the pair that gives sum 160.
\left(-x^{2}+140x\right)+\left(20x-2800\right)
Rewrite -x^{2}+160x-2800 as \left(-x^{2}+140x\right)+\left(20x-2800\right).
-x\left(x-140\right)+20\left(x-140\right)
Factor out -x in the first and 20 in the second group.
\left(x-140\right)\left(-x+20\right)
Factor out common term x-140 by using distributive property.
-x^{2}+160x-2800=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-160±\sqrt{160^{2}-4\left(-1\right)\left(-2800\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-160±\sqrt{25600-4\left(-1\right)\left(-2800\right)}}{2\left(-1\right)}
Square 160.
x=\frac{-160±\sqrt{25600+4\left(-2800\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-160±\sqrt{25600-11200}}{2\left(-1\right)}
Multiply 4 times -2800.
x=\frac{-160±\sqrt{14400}}{2\left(-1\right)}
Add 25600 to -11200.
x=\frac{-160±120}{2\left(-1\right)}
Take the square root of 14400.
x=\frac{-160±120}{-2}
Multiply 2 times -1.
x=-\frac{40}{-2}
Now solve the equation x=\frac{-160±120}{-2} when ± is plus. Add -160 to 120.
x=20
Divide -40 by -2.
x=-\frac{280}{-2}
Now solve the equation x=\frac{-160±120}{-2} when ± is minus. Subtract 120 from -160.
x=140
Divide -280 by -2.
-x^{2}+160x-2800=-\left(x-20\right)\left(x-140\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 20 for x_{1} and 140 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}