Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-25x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -25 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625+4\left(-7\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-25\right)±\sqrt{625-28}}{2\left(-1\right)}
Multiply 4 times -7.
x=\frac{-\left(-25\right)±\sqrt{597}}{2\left(-1\right)}
Add 625 to -28.
x=\frac{25±\sqrt{597}}{2\left(-1\right)}
The opposite of -25 is 25.
x=\frac{25±\sqrt{597}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{597}+25}{-2}
Now solve the equation x=\frac{25±\sqrt{597}}{-2} when ± is plus. Add 25 to \sqrt{597}.
x=\frac{-\sqrt{597}-25}{2}
Divide 25+\sqrt{597} by -2.
x=\frac{25-\sqrt{597}}{-2}
Now solve the equation x=\frac{25±\sqrt{597}}{-2} when ± is minus. Subtract \sqrt{597} from 25.
x=\frac{\sqrt{597}-25}{2}
Divide 25-\sqrt{597} by -2.
x=\frac{-\sqrt{597}-25}{2} x=\frac{\sqrt{597}-25}{2}
The equation is now solved.
-x^{2}-25x-7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-25x-7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
-x^{2}-25x=-\left(-7\right)
Subtracting -7 from itself leaves 0.
-x^{2}-25x=7
Subtract -7 from 0.
\frac{-x^{2}-25x}{-1}=\frac{7}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{25}{-1}\right)x=\frac{7}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+25x=\frac{7}{-1}
Divide -25 by -1.
x^{2}+25x=-7
Divide 7 by -1.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=-7+\left(\frac{25}{2}\right)^{2}
Divide 25, the coefficient of the x term, by 2 to get \frac{25}{2}. Then add the square of \frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+25x+\frac{625}{4}=-7+\frac{625}{4}
Square \frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+25x+\frac{625}{4}=\frac{597}{4}
Add -7 to \frac{625}{4}.
\left(x+\frac{25}{2}\right)^{2}=\frac{597}{4}
Factor x^{2}+25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{\frac{597}{4}}
Take the square root of both sides of the equation.
x+\frac{25}{2}=\frac{\sqrt{597}}{2} x+\frac{25}{2}=-\frac{\sqrt{597}}{2}
Simplify.
x=\frac{\sqrt{597}-25}{2} x=\frac{-\sqrt{597}-25}{2}
Subtract \frac{25}{2} from both sides of the equation.