Solve for x
x=\frac{1}{2\left(65y+1\right)}
y\neq -\frac{1}{65}
Solve for y
y=-\frac{1}{65}+\frac{1}{130x}
x\neq 0
Graph
Share
Copied to clipboard
-25=50\left(-x\right)+3250\left(-x\right)y
Use the distributive property to multiply -x by 50+3250y.
50\left(-x\right)+3250\left(-x\right)y=-25
Swap sides so that all variable terms are on the left hand side.
-50x+3250\left(-1\right)xy=-25
Multiply 50 and -1 to get -50.
-50x-3250xy=-25
Multiply 3250 and -1 to get -3250.
\left(-50-3250y\right)x=-25
Combine all terms containing x.
\left(-3250y-50\right)x=-25
The equation is in standard form.
\frac{\left(-3250y-50\right)x}{-3250y-50}=-\frac{25}{-3250y-50}
Divide both sides by -50-3250y.
x=-\frac{25}{-3250y-50}
Dividing by -50-3250y undoes the multiplication by -50-3250y.
x=\frac{1}{2\left(65y+1\right)}
Divide -25 by -50-3250y.
-25=50\left(-x\right)+3250\left(-x\right)y
Use the distributive property to multiply -x by 50+3250y.
50\left(-x\right)+3250\left(-x\right)y=-25
Swap sides so that all variable terms are on the left hand side.
3250\left(-x\right)y=-25-50\left(-x\right)
Subtract 50\left(-x\right) from both sides.
-3250xy=-25-50\left(-1\right)x
Multiply 3250 and -1 to get -3250.
-3250xy=-25+50x
Multiply -50 and -1 to get 50.
\left(-3250x\right)y=50x-25
The equation is in standard form.
\frac{\left(-3250x\right)y}{-3250x}=\frac{50x-25}{-3250x}
Divide both sides by -3250x.
y=\frac{50x-25}{-3250x}
Dividing by -3250x undoes the multiplication by -3250x.
y=-\frac{1}{65}+\frac{1}{130x}
Divide -25+50x by -3250x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}