Factor
3\left(-x-6\right)\left(8x+79\right)
Evaluate
-24x^{2}-381x-1422
Graph
Share
Copied to clipboard
3\left(-8x^{2}-127x-474\right)
Factor out 3.
a+b=-127 ab=-8\left(-474\right)=3792
Consider -8x^{2}-127x-474. Factor the expression by grouping. First, the expression needs to be rewritten as -8x^{2}+ax+bx-474. To find a and b, set up a system to be solved.
-1,-3792 -2,-1896 -3,-1264 -4,-948 -6,-632 -8,-474 -12,-316 -16,-237 -24,-158 -48,-79
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 3792.
-1-3792=-3793 -2-1896=-1898 -3-1264=-1267 -4-948=-952 -6-632=-638 -8-474=-482 -12-316=-328 -16-237=-253 -24-158=-182 -48-79=-127
Calculate the sum for each pair.
a=-48 b=-79
The solution is the pair that gives sum -127.
\left(-8x^{2}-48x\right)+\left(-79x-474\right)
Rewrite -8x^{2}-127x-474 as \left(-8x^{2}-48x\right)+\left(-79x-474\right).
8x\left(-x-6\right)+79\left(-x-6\right)
Factor out 8x in the first and 79 in the second group.
\left(-x-6\right)\left(8x+79\right)
Factor out common term -x-6 by using distributive property.
3\left(-x-6\right)\left(8x+79\right)
Rewrite the complete factored expression.
-24x^{2}-381x-1422=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-381\right)±\sqrt{\left(-381\right)^{2}-4\left(-24\right)\left(-1422\right)}}{2\left(-24\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-381\right)±\sqrt{145161-4\left(-24\right)\left(-1422\right)}}{2\left(-24\right)}
Square -381.
x=\frac{-\left(-381\right)±\sqrt{145161+96\left(-1422\right)}}{2\left(-24\right)}
Multiply -4 times -24.
x=\frac{-\left(-381\right)±\sqrt{145161-136512}}{2\left(-24\right)}
Multiply 96 times -1422.
x=\frac{-\left(-381\right)±\sqrt{8649}}{2\left(-24\right)}
Add 145161 to -136512.
x=\frac{-\left(-381\right)±93}{2\left(-24\right)}
Take the square root of 8649.
x=\frac{381±93}{2\left(-24\right)}
The opposite of -381 is 381.
x=\frac{381±93}{-48}
Multiply 2 times -24.
x=\frac{474}{-48}
Now solve the equation x=\frac{381±93}{-48} when ± is plus. Add 381 to 93.
x=-\frac{79}{8}
Reduce the fraction \frac{474}{-48} to lowest terms by extracting and canceling out 6.
x=\frac{288}{-48}
Now solve the equation x=\frac{381±93}{-48} when ± is minus. Subtract 93 from 381.
x=-6
Divide 288 by -48.
-24x^{2}-381x-1422=-24\left(x-\left(-\frac{79}{8}\right)\right)\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{79}{8} for x_{1} and -6 for x_{2}.
-24x^{2}-381x-1422=-24\left(x+\frac{79}{8}\right)\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-24x^{2}-381x-1422=-24\times \frac{-8x-79}{-8}\left(x+6\right)
Add \frac{79}{8} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-24x^{2}-381x-1422=3\left(-8x-79\right)\left(x+6\right)
Cancel out 8, the greatest common factor in -24 and 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}