Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-21x^{2}+16x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\left(-21\right)\times 2}}{2\left(-21\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\left(-21\right)\times 2}}{2\left(-21\right)}
Square 16.
x=\frac{-16±\sqrt{256+84\times 2}}{2\left(-21\right)}
Multiply -4 times -21.
x=\frac{-16±\sqrt{256+168}}{2\left(-21\right)}
Multiply 84 times 2.
x=\frac{-16±\sqrt{424}}{2\left(-21\right)}
Add 256 to 168.
x=\frac{-16±2\sqrt{106}}{2\left(-21\right)}
Take the square root of 424.
x=\frac{-16±2\sqrt{106}}{-42}
Multiply 2 times -21.
x=\frac{2\sqrt{106}-16}{-42}
Now solve the equation x=\frac{-16±2\sqrt{106}}{-42} when ± is plus. Add -16 to 2\sqrt{106}.
x=\frac{8-\sqrt{106}}{21}
Divide -16+2\sqrt{106} by -42.
x=\frac{-2\sqrt{106}-16}{-42}
Now solve the equation x=\frac{-16±2\sqrt{106}}{-42} when ± is minus. Subtract 2\sqrt{106} from -16.
x=\frac{\sqrt{106}+8}{21}
Divide -16-2\sqrt{106} by -42.
-21x^{2}+16x+2=-21\left(x-\frac{8-\sqrt{106}}{21}\right)\left(x-\frac{\sqrt{106}+8}{21}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{8-\sqrt{106}}{21} for x_{1} and \frac{8+\sqrt{106}}{21} for x_{2}.