Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

-20700-153900d-5386d^{2}=0
Subtract 5386d^{2} from both sides.
-5386d^{2}-153900d-20700=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-153900\right)±\sqrt{\left(-153900\right)^{2}-4\left(-5386\right)\left(-20700\right)}}{2\left(-5386\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5386 for a, -153900 for b, and -20700 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-153900\right)±\sqrt{23685210000-4\left(-5386\right)\left(-20700\right)}}{2\left(-5386\right)}
Square -153900.
d=\frac{-\left(-153900\right)±\sqrt{23685210000+21544\left(-20700\right)}}{2\left(-5386\right)}
Multiply -4 times -5386.
d=\frac{-\left(-153900\right)±\sqrt{23685210000-445960800}}{2\left(-5386\right)}
Multiply 21544 times -20700.
d=\frac{-\left(-153900\right)±\sqrt{23239249200}}{2\left(-5386\right)}
Add 23685210000 to -445960800.
d=\frac{-\left(-153900\right)±60\sqrt{6455347}}{2\left(-5386\right)}
Take the square root of 23239249200.
d=\frac{153900±60\sqrt{6455347}}{2\left(-5386\right)}
The opposite of -153900 is 153900.
d=\frac{153900±60\sqrt{6455347}}{-10772}
Multiply 2 times -5386.
d=\frac{60\sqrt{6455347}+153900}{-10772}
Now solve the equation d=\frac{153900±60\sqrt{6455347}}{-10772} when ± is plus. Add 153900 to 60\sqrt{6455347}.
d=\frac{-15\sqrt{6455347}-38475}{2693}
Divide 153900+60\sqrt{6455347} by -10772.
d=\frac{153900-60\sqrt{6455347}}{-10772}
Now solve the equation d=\frac{153900±60\sqrt{6455347}}{-10772} when ± is minus. Subtract 60\sqrt{6455347} from 153900.
d=\frac{15\sqrt{6455347}-38475}{2693}
Divide 153900-60\sqrt{6455347} by -10772.
d=\frac{-15\sqrt{6455347}-38475}{2693} d=\frac{15\sqrt{6455347}-38475}{2693}
The equation is now solved.
-20700-153900d-5386d^{2}=0
Subtract 5386d^{2} from both sides.
-153900d-5386d^{2}=20700
Add 20700 to both sides. Anything plus zero gives itself.
-5386d^{2}-153900d=20700
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5386d^{2}-153900d}{-5386}=\frac{20700}{-5386}
Divide both sides by -5386.
d^{2}+\left(-\frac{153900}{-5386}\right)d=\frac{20700}{-5386}
Dividing by -5386 undoes the multiplication by -5386.
d^{2}+\frac{76950}{2693}d=\frac{20700}{-5386}
Reduce the fraction \frac{-153900}{-5386} to lowest terms by extracting and canceling out 2.
d^{2}+\frac{76950}{2693}d=-\frac{10350}{2693}
Reduce the fraction \frac{20700}{-5386} to lowest terms by extracting and canceling out 2.
d^{2}+\frac{76950}{2693}d+\left(\frac{38475}{2693}\right)^{2}=-\frac{10350}{2693}+\left(\frac{38475}{2693}\right)^{2}
Divide \frac{76950}{2693}, the coefficient of the x term, by 2 to get \frac{38475}{2693}. Then add the square of \frac{38475}{2693} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+\frac{76950}{2693}d+\frac{1480325625}{7252249}=-\frac{10350}{2693}+\frac{1480325625}{7252249}
Square \frac{38475}{2693} by squaring both the numerator and the denominator of the fraction.
d^{2}+\frac{76950}{2693}d+\frac{1480325625}{7252249}=\frac{1452453075}{7252249}
Add -\frac{10350}{2693} to \frac{1480325625}{7252249} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d+\frac{38475}{2693}\right)^{2}=\frac{1452453075}{7252249}
Factor d^{2}+\frac{76950}{2693}d+\frac{1480325625}{7252249}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{38475}{2693}\right)^{2}}=\sqrt{\frac{1452453075}{7252249}}
Take the square root of both sides of the equation.
d+\frac{38475}{2693}=\frac{15\sqrt{6455347}}{2693} d+\frac{38475}{2693}=-\frac{15\sqrt{6455347}}{2693}
Simplify.
d=\frac{15\sqrt{6455347}-38475}{2693} d=\frac{-15\sqrt{6455347}-38475}{2693}
Subtract \frac{38475}{2693} from both sides of the equation.