Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-9 ab=-20\times 20=-400
Factor the expression by grouping. First, the expression needs to be rewritten as -20x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
1,-400 2,-200 4,-100 5,-80 8,-50 10,-40 16,-25 20,-20
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -400.
1-400=-399 2-200=-198 4-100=-96 5-80=-75 8-50=-42 10-40=-30 16-25=-9 20-20=0
Calculate the sum for each pair.
a=16 b=-25
The solution is the pair that gives sum -9.
\left(-20x^{2}+16x\right)+\left(-25x+20\right)
Rewrite -20x^{2}-9x+20 as \left(-20x^{2}+16x\right)+\left(-25x+20\right).
4x\left(-5x+4\right)+5\left(-5x+4\right)
Factor out 4x in the first and 5 in the second group.
\left(-5x+4\right)\left(4x+5\right)
Factor out common term -5x+4 by using distributive property.
-20x^{2}-9x+20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-20\right)\times 20}}{2\left(-20\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-20\right)\times 20}}{2\left(-20\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+80\times 20}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-\left(-9\right)±\sqrt{81+1600}}{2\left(-20\right)}
Multiply 80 times 20.
x=\frac{-\left(-9\right)±\sqrt{1681}}{2\left(-20\right)}
Add 81 to 1600.
x=\frac{-\left(-9\right)±41}{2\left(-20\right)}
Take the square root of 1681.
x=\frac{9±41}{2\left(-20\right)}
The opposite of -9 is 9.
x=\frac{9±41}{-40}
Multiply 2 times -20.
x=\frac{50}{-40}
Now solve the equation x=\frac{9±41}{-40} when ± is plus. Add 9 to 41.
x=-\frac{5}{4}
Reduce the fraction \frac{50}{-40} to lowest terms by extracting and canceling out 10.
x=-\frac{32}{-40}
Now solve the equation x=\frac{9±41}{-40} when ± is minus. Subtract 41 from 9.
x=\frac{4}{5}
Reduce the fraction \frac{-32}{-40} to lowest terms by extracting and canceling out 8.
-20x^{2}-9x+20=-20\left(x-\left(-\frac{5}{4}\right)\right)\left(x-\frac{4}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{4} for x_{1} and \frac{4}{5} for x_{2}.
-20x^{2}-9x+20=-20\left(x+\frac{5}{4}\right)\left(x-\frac{4}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-20x^{2}-9x+20=-20\times \frac{-4x-5}{-4}\left(x-\frac{4}{5}\right)
Add \frac{5}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-20x^{2}-9x+20=-20\times \frac{-4x-5}{-4}\times \frac{-5x+4}{-5}
Subtract \frac{4}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-20x^{2}-9x+20=-20\times \frac{\left(-4x-5\right)\left(-5x+4\right)}{-4\left(-5\right)}
Multiply \frac{-4x-5}{-4} times \frac{-5x+4}{-5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-20x^{2}-9x+20=-20\times \frac{\left(-4x-5\right)\left(-5x+4\right)}{20}
Multiply -4 times -5.
-20x^{2}-9x+20=-\left(-4x-5\right)\left(-5x+4\right)
Cancel out 20, the greatest common factor in -20 and 20.