Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-20x^{2}+66x-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-66±\sqrt{66^{2}-4\left(-20\right)\left(-20\right)}}{2\left(-20\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-66±\sqrt{4356-4\left(-20\right)\left(-20\right)}}{2\left(-20\right)}
Square 66.
x=\frac{-66±\sqrt{4356+80\left(-20\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-66±\sqrt{4356-1600}}{2\left(-20\right)}
Multiply 80 times -20.
x=\frac{-66±\sqrt{2756}}{2\left(-20\right)}
Add 4356 to -1600.
x=\frac{-66±2\sqrt{689}}{2\left(-20\right)}
Take the square root of 2756.
x=\frac{-66±2\sqrt{689}}{-40}
Multiply 2 times -20.
x=\frac{2\sqrt{689}-66}{-40}
Now solve the equation x=\frac{-66±2\sqrt{689}}{-40} when ± is plus. Add -66 to 2\sqrt{689}.
x=\frac{33-\sqrt{689}}{20}
Divide -66+2\sqrt{689} by -40.
x=\frac{-2\sqrt{689}-66}{-40}
Now solve the equation x=\frac{-66±2\sqrt{689}}{-40} when ± is minus. Subtract 2\sqrt{689} from -66.
x=\frac{\sqrt{689}+33}{20}
Divide -66-2\sqrt{689} by -40.
-20x^{2}+66x-20=-20\left(x-\frac{33-\sqrt{689}}{20}\right)\left(x-\frac{\sqrt{689}+33}{20}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{33-\sqrt{689}}{20} for x_{1} and \frac{33+\sqrt{689}}{20} for x_{2}.