Solve for x (complex solution)
x=60+5\sqrt{29}i\approx 60+26.925824036i
x=-5\sqrt{29}i+60\approx 60-26.925824036i
Graph
Share
Copied to clipboard
\left(-2x+80\right)\left(x-80\right)=2250
Use the distributive property to multiply -2 by x-40.
-2x^{2}+240x-6400=2250
Use the distributive property to multiply -2x+80 by x-80 and combine like terms.
-2x^{2}+240x-6400-2250=0
Subtract 2250 from both sides.
-2x^{2}+240x-8650=0
Subtract 2250 from -6400 to get -8650.
x=\frac{-240±\sqrt{240^{2}-4\left(-2\right)\left(-8650\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 240 for b, and -8650 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-240±\sqrt{57600-4\left(-2\right)\left(-8650\right)}}{2\left(-2\right)}
Square 240.
x=\frac{-240±\sqrt{57600+8\left(-8650\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-240±\sqrt{57600-69200}}{2\left(-2\right)}
Multiply 8 times -8650.
x=\frac{-240±\sqrt{-11600}}{2\left(-2\right)}
Add 57600 to -69200.
x=\frac{-240±20\sqrt{29}i}{2\left(-2\right)}
Take the square root of -11600.
x=\frac{-240±20\sqrt{29}i}{-4}
Multiply 2 times -2.
x=\frac{-240+20\sqrt{29}i}{-4}
Now solve the equation x=\frac{-240±20\sqrt{29}i}{-4} when ± is plus. Add -240 to 20i\sqrt{29}.
x=-5\sqrt{29}i+60
Divide -240+20i\sqrt{29} by -4.
x=\frac{-20\sqrt{29}i-240}{-4}
Now solve the equation x=\frac{-240±20\sqrt{29}i}{-4} when ± is minus. Subtract 20i\sqrt{29} from -240.
x=60+5\sqrt{29}i
Divide -240-20i\sqrt{29} by -4.
x=-5\sqrt{29}i+60 x=60+5\sqrt{29}i
The equation is now solved.
\left(-2x+80\right)\left(x-80\right)=2250
Use the distributive property to multiply -2 by x-40.
-2x^{2}+240x-6400=2250
Use the distributive property to multiply -2x+80 by x-80 and combine like terms.
-2x^{2}+240x=2250+6400
Add 6400 to both sides.
-2x^{2}+240x=8650
Add 2250 and 6400 to get 8650.
\frac{-2x^{2}+240x}{-2}=\frac{8650}{-2}
Divide both sides by -2.
x^{2}+\frac{240}{-2}x=\frac{8650}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-120x=\frac{8650}{-2}
Divide 240 by -2.
x^{2}-120x=-4325
Divide 8650 by -2.
x^{2}-120x+\left(-60\right)^{2}=-4325+\left(-60\right)^{2}
Divide -120, the coefficient of the x term, by 2 to get -60. Then add the square of -60 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-120x+3600=-4325+3600
Square -60.
x^{2}-120x+3600=-725
Add -4325 to 3600.
\left(x-60\right)^{2}=-725
Factor x^{2}-120x+3600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-60\right)^{2}}=\sqrt{-725}
Take the square root of both sides of the equation.
x-60=5\sqrt{29}i x-60=-5\sqrt{29}i
Simplify.
x=60+5\sqrt{29}i x=-5\sqrt{29}i+60
Add 60 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}