Solve for x
x=65
x=85
Graph
Share
Copied to clipboard
\left(-2x+80\right)\left(x-110\right)=2250
Use the distributive property to multiply -2 by x-40.
-2x^{2}+300x-8800=2250
Use the distributive property to multiply -2x+80 by x-110 and combine like terms.
-2x^{2}+300x-8800-2250=0
Subtract 2250 from both sides.
-2x^{2}+300x-11050=0
Subtract 2250 from -8800 to get -11050.
x=\frac{-300±\sqrt{300^{2}-4\left(-2\right)\left(-11050\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 300 for b, and -11050 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-300±\sqrt{90000-4\left(-2\right)\left(-11050\right)}}{2\left(-2\right)}
Square 300.
x=\frac{-300±\sqrt{90000+8\left(-11050\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-300±\sqrt{90000-88400}}{2\left(-2\right)}
Multiply 8 times -11050.
x=\frac{-300±\sqrt{1600}}{2\left(-2\right)}
Add 90000 to -88400.
x=\frac{-300±40}{2\left(-2\right)}
Take the square root of 1600.
x=\frac{-300±40}{-4}
Multiply 2 times -2.
x=-\frac{260}{-4}
Now solve the equation x=\frac{-300±40}{-4} when ± is plus. Add -300 to 40.
x=65
Divide -260 by -4.
x=-\frac{340}{-4}
Now solve the equation x=\frac{-300±40}{-4} when ± is minus. Subtract 40 from -300.
x=85
Divide -340 by -4.
x=65 x=85
The equation is now solved.
\left(-2x+80\right)\left(x-110\right)=2250
Use the distributive property to multiply -2 by x-40.
-2x^{2}+300x-8800=2250
Use the distributive property to multiply -2x+80 by x-110 and combine like terms.
-2x^{2}+300x=2250+8800
Add 8800 to both sides.
-2x^{2}+300x=11050
Add 2250 and 8800 to get 11050.
\frac{-2x^{2}+300x}{-2}=\frac{11050}{-2}
Divide both sides by -2.
x^{2}+\frac{300}{-2}x=\frac{11050}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-150x=\frac{11050}{-2}
Divide 300 by -2.
x^{2}-150x=-5525
Divide 11050 by -2.
x^{2}-150x+\left(-75\right)^{2}=-5525+\left(-75\right)^{2}
Divide -150, the coefficient of the x term, by 2 to get -75. Then add the square of -75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-150x+5625=-5525+5625
Square -75.
x^{2}-150x+5625=100
Add -5525 to 5625.
\left(x-75\right)^{2}=100
Factor x^{2}-150x+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-75\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x-75=10 x-75=-10
Simplify.
x=85 x=65
Add 75 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}