-2(-3+5(-3+ \frac{ 3 }{ 4 } ))-5( \frac{ 4 }{ 3 } -2(5 \times \frac{ 1 }{ 2 } )
Evaluate
\frac{281}{6}\approx 46.833333333
Factor
\frac{281}{2 \cdot 3} = 46\frac{5}{6} = 46.833333333333336
Share
Copied to clipboard
-2\left(-3+5\left(-\frac{12}{4}+\frac{3}{4}\right)\right)-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Convert -3 to fraction -\frac{12}{4}.
-2\left(-3+5\times \frac{-12+3}{4}\right)-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Since -\frac{12}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
-2\left(-3+5\left(-\frac{9}{4}\right)\right)-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Add -12 and 3 to get -9.
-2\left(-3+\frac{5\left(-9\right)}{4}\right)-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Express 5\left(-\frac{9}{4}\right) as a single fraction.
-2\left(-3+\frac{-45}{4}\right)-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Multiply 5 and -9 to get -45.
-2\left(-3-\frac{45}{4}\right)-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Fraction \frac{-45}{4} can be rewritten as -\frac{45}{4} by extracting the negative sign.
-2\left(-\frac{12}{4}-\frac{45}{4}\right)-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Convert -3 to fraction -\frac{12}{4}.
-2\times \frac{-12-45}{4}-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Since -\frac{12}{4} and \frac{45}{4} have the same denominator, subtract them by subtracting their numerators.
-2\left(-\frac{57}{4}\right)-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Subtract 45 from -12 to get -57.
\frac{-2\left(-57\right)}{4}-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Express -2\left(-\frac{57}{4}\right) as a single fraction.
\frac{114}{4}-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Multiply -2 and -57 to get 114.
\frac{57}{2}-5\left(\frac{4}{3}-2\times 5\times \frac{1}{2}\right)
Reduce the fraction \frac{114}{4} to lowest terms by extracting and canceling out 2.
\frac{57}{2}-5\left(\frac{4}{3}-10\times \frac{1}{2}\right)
Multiply 2 and 5 to get 10.
\frac{57}{2}-5\left(\frac{4}{3}-\frac{10}{2}\right)
Multiply 10 and \frac{1}{2} to get \frac{10}{2}.
\frac{57}{2}-5\left(\frac{4}{3}-5\right)
Divide 10 by 2 to get 5.
\frac{57}{2}-5\left(\frac{4}{3}-\frac{15}{3}\right)
Convert 5 to fraction \frac{15}{3}.
\frac{57}{2}-5\times \frac{4-15}{3}
Since \frac{4}{3} and \frac{15}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{57}{2}-5\left(-\frac{11}{3}\right)
Subtract 15 from 4 to get -11.
\frac{57}{2}-\frac{5\left(-11\right)}{3}
Express 5\left(-\frac{11}{3}\right) as a single fraction.
\frac{57}{2}-\frac{-55}{3}
Multiply 5 and -11 to get -55.
\frac{57}{2}-\left(-\frac{55}{3}\right)
Fraction \frac{-55}{3} can be rewritten as -\frac{55}{3} by extracting the negative sign.
\frac{57}{2}+\frac{55}{3}
The opposite of -\frac{55}{3} is \frac{55}{3}.
\frac{171}{6}+\frac{110}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{57}{2} and \frac{55}{3} to fractions with denominator 6.
\frac{171+110}{6}
Since \frac{171}{6} and \frac{110}{6} have the same denominator, add them by adding their numerators.
\frac{281}{6}
Add 171 and 110 to get 281.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}