Evaluate
-\frac{7}{2}=-3.5
Factor
-\frac{7}{2} = -3\frac{1}{2} = -3.5
Share
Copied to clipboard
-2+\frac{3}{4}\left(-2\right)
Divide \frac{3}{4} by -\frac{1}{2} by multiplying \frac{3}{4} by the reciprocal of -\frac{1}{2}.
-2+\frac{3\left(-2\right)}{4}
Express \frac{3}{4}\left(-2\right) as a single fraction.
-2+\frac{-6}{4}
Multiply 3 and -2 to get -6.
-2-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
-\frac{4}{2}-\frac{3}{2}
Convert -2 to fraction -\frac{4}{2}.
\frac{-4-3}{2}
Since -\frac{4}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{2}
Subtract 3 from -4 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}