Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-x+6=0
Add 6 to both sides.
a+b=-1 ab=-2\times 6=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=3 b=-4
The solution is the pair that gives sum -1.
\left(-2x^{2}+3x\right)+\left(-4x+6\right)
Rewrite -2x^{2}-x+6 as \left(-2x^{2}+3x\right)+\left(-4x+6\right).
-x\left(2x-3\right)-2\left(2x-3\right)
Factor out -x in the first and -2 in the second group.
\left(2x-3\right)\left(-x-2\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=-2
To find equation solutions, solve 2x-3=0 and -x-2=0.
-2x^{2}-x=-6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}-x-\left(-6\right)=-6-\left(-6\right)
Add 6 to both sides of the equation.
-2x^{2}-x-\left(-6\right)=0
Subtracting -6 from itself leaves 0.
-2x^{2}-x+6=0
Subtract -6 from 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)\times 6}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -1 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8\times 6}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\left(-2\right)}
Multiply 8 times 6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\left(-2\right)}
Add 1 to 48.
x=\frac{-\left(-1\right)±7}{2\left(-2\right)}
Take the square root of 49.
x=\frac{1±7}{2\left(-2\right)}
The opposite of -1 is 1.
x=\frac{1±7}{-4}
Multiply 2 times -2.
x=\frac{8}{-4}
Now solve the equation x=\frac{1±7}{-4} when ± is plus. Add 1 to 7.
x=-2
Divide 8 by -4.
x=-\frac{6}{-4}
Now solve the equation x=\frac{1±7}{-4} when ± is minus. Subtract 7 from 1.
x=\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out 2.
x=-2 x=\frac{3}{2}
The equation is now solved.
-2x^{2}-x=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-x}{-2}=-\frac{6}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{1}{-2}\right)x=-\frac{6}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{1}{2}x=-\frac{6}{-2}
Divide -1 by -2.
x^{2}+\frac{1}{2}x=3
Divide -6 by -2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=3+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Add 3 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{7}{4} x+\frac{1}{4}=-\frac{7}{4}
Simplify.
x=\frac{3}{2} x=-2
Subtract \frac{1}{4} from both sides of the equation.