Solve for x
x = \frac{\sqrt{129} - 1}{4} \approx 2.589454173
x=\frac{-\sqrt{129}-1}{4}\approx -3.089454173
Graph
Share
Copied to clipboard
-2x^{2}-x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)\times 16}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -1 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8\times 16}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-1\right)±\sqrt{1+128}}{2\left(-2\right)}
Multiply 8 times 16.
x=\frac{-\left(-1\right)±\sqrt{129}}{2\left(-2\right)}
Add 1 to 128.
x=\frac{1±\sqrt{129}}{2\left(-2\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{129}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{129}+1}{-4}
Now solve the equation x=\frac{1±\sqrt{129}}{-4} when ± is plus. Add 1 to \sqrt{129}.
x=\frac{-\sqrt{129}-1}{4}
Divide 1+\sqrt{129} by -4.
x=\frac{1-\sqrt{129}}{-4}
Now solve the equation x=\frac{1±\sqrt{129}}{-4} when ± is minus. Subtract \sqrt{129} from 1.
x=\frac{\sqrt{129}-1}{4}
Divide 1-\sqrt{129} by -4.
x=\frac{-\sqrt{129}-1}{4} x=\frac{\sqrt{129}-1}{4}
The equation is now solved.
-2x^{2}-x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}-x+16-16=-16
Subtract 16 from both sides of the equation.
-2x^{2}-x=-16
Subtracting 16 from itself leaves 0.
\frac{-2x^{2}-x}{-2}=-\frac{16}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{1}{-2}\right)x=-\frac{16}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{1}{2}x=-\frac{16}{-2}
Divide -1 by -2.
x^{2}+\frac{1}{2}x=8
Divide -16 by -2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=8+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=8+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{129}{16}
Add 8 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{129}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{129}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{129}}{4} x+\frac{1}{4}=-\frac{\sqrt{129}}{4}
Simplify.
x=\frac{\sqrt{129}-1}{4} x=\frac{-\sqrt{129}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}