Factor
-2\left(x-\frac{-\sqrt{33}-5}{4}\right)\left(x-\frac{\sqrt{33}-5}{4}\right)
Evaluate
1-5x-2x^{2}
Graph
Share
Copied to clipboard
-2x^{2}-5x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-2\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-2\right)}}{2\left(-2\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+8}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-5\right)±\sqrt{33}}{2\left(-2\right)}
Add 25 to 8.
x=\frac{5±\sqrt{33}}{2\left(-2\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{33}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{33}+5}{-4}
Now solve the equation x=\frac{5±\sqrt{33}}{-4} when ± is plus. Add 5 to \sqrt{33}.
x=\frac{-\sqrt{33}-5}{4}
Divide 5+\sqrt{33} by -4.
x=\frac{5-\sqrt{33}}{-4}
Now solve the equation x=\frac{5±\sqrt{33}}{-4} when ± is minus. Subtract \sqrt{33} from 5.
x=\frac{\sqrt{33}-5}{4}
Divide 5-\sqrt{33} by -4.
-2x^{2}-5x+1=-2\left(x-\frac{-\sqrt{33}-5}{4}\right)\left(x-\frac{\sqrt{33}-5}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5-\sqrt{33}}{4} for x_{1} and \frac{-5+\sqrt{33}}{4} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}