Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-3 ab=-2\times 2=-4
Factor the expression by grouping. First, the expression needs to be rewritten as -2x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
1,-4 2,-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4.
1-4=-3 2-2=0
Calculate the sum for each pair.
a=1 b=-4
The solution is the pair that gives sum -3.
\left(-2x^{2}+x\right)+\left(-4x+2\right)
Rewrite -2x^{2}-3x+2 as \left(-2x^{2}+x\right)+\left(-4x+2\right).
-x\left(2x-1\right)-2\left(2x-1\right)
Factor out -x in the first and -2 in the second group.
\left(2x-1\right)\left(-x-2\right)
Factor out common term 2x-1 by using distributive property.
-2x^{2}-3x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)\times 2}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)\times 2}}{2\left(-2\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+8\times 2}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\left(-2\right)}
Multiply 8 times 2.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\left(-2\right)}
Add 9 to 16.
x=\frac{-\left(-3\right)±5}{2\left(-2\right)}
Take the square root of 25.
x=\frac{3±5}{2\left(-2\right)}
The opposite of -3 is 3.
x=\frac{3±5}{-4}
Multiply 2 times -2.
x=\frac{8}{-4}
Now solve the equation x=\frac{3±5}{-4} when ± is plus. Add 3 to 5.
x=-2
Divide 8 by -4.
x=-\frac{2}{-4}
Now solve the equation x=\frac{3±5}{-4} when ± is minus. Subtract 5 from 3.
x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out 2.
-2x^{2}-3x+2=-2\left(x-\left(-2\right)\right)\left(x-\frac{1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and \frac{1}{2} for x_{2}.
-2x^{2}-3x+2=-2\left(x+2\right)\left(x-\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-2x^{2}-3x+2=-2\left(x+2\right)\times \frac{-2x+1}{-2}
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-2x^{2}-3x+2=\left(x+2\right)\left(-2x+1\right)
Cancel out 2, the greatest common factor in -2 and 2.