Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+8x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Square 8.
x=\frac{-8±\sqrt{64+8\left(-1\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-8±\sqrt{64-8}}{2\left(-2\right)}
Multiply 8 times -1.
x=\frac{-8±\sqrt{56}}{2\left(-2\right)}
Add 64 to -8.
x=\frac{-8±2\sqrt{14}}{2\left(-2\right)}
Take the square root of 56.
x=\frac{-8±2\sqrt{14}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{14}-8}{-4}
Now solve the equation x=\frac{-8±2\sqrt{14}}{-4} when ± is plus. Add -8 to 2\sqrt{14}.
x=-\frac{\sqrt{14}}{2}+2
Divide -8+2\sqrt{14} by -4.
x=\frac{-2\sqrt{14}-8}{-4}
Now solve the equation x=\frac{-8±2\sqrt{14}}{-4} when ± is minus. Subtract 2\sqrt{14} from -8.
x=\frac{\sqrt{14}}{2}+2
Divide -8-2\sqrt{14} by -4.
-2x^{2}+8x-1=-2\left(x-\left(-\frac{\sqrt{14}}{2}+2\right)\right)\left(x-\left(\frac{\sqrt{14}}{2}+2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2-\frac{\sqrt{14}}{2} for x_{1} and 2+\frac{\sqrt{14}}{2} for x_{2}.