Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+40x+100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-40±\sqrt{40^{2}-4\left(-2\right)\times 100}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{1600-4\left(-2\right)\times 100}}{2\left(-2\right)}
Square 40.
x=\frac{-40±\sqrt{1600+8\times 100}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-40±\sqrt{1600+800}}{2\left(-2\right)}
Multiply 8 times 100.
x=\frac{-40±\sqrt{2400}}{2\left(-2\right)}
Add 1600 to 800.
x=\frac{-40±20\sqrt{6}}{2\left(-2\right)}
Take the square root of 2400.
x=\frac{-40±20\sqrt{6}}{-4}
Multiply 2 times -2.
x=\frac{20\sqrt{6}-40}{-4}
Now solve the equation x=\frac{-40±20\sqrt{6}}{-4} when ± is plus. Add -40 to 20\sqrt{6}.
x=10-5\sqrt{6}
Divide -40+20\sqrt{6} by -4.
x=\frac{-20\sqrt{6}-40}{-4}
Now solve the equation x=\frac{-40±20\sqrt{6}}{-4} when ± is minus. Subtract 20\sqrt{6} from -40.
x=5\sqrt{6}+10
Divide -40-20\sqrt{6} by -4.
-2x^{2}+40x+100=-2\left(x-\left(10-5\sqrt{6}\right)\right)\left(x-\left(5\sqrt{6}+10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 10-5\sqrt{6} for x_{1} and 10+5\sqrt{6} for x_{2}.