Solve for x
x=80
x=100
Graph
Share
Copied to clipboard
-2x^{2}+360x-13000=3000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+360x-13000-3000=3000-3000
Subtract 3000 from both sides of the equation.
-2x^{2}+360x-13000-3000=0
Subtracting 3000 from itself leaves 0.
-2x^{2}+360x-16000=0
Subtract 3000 from -13000.
x=\frac{-360±\sqrt{360^{2}-4\left(-2\right)\left(-16000\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 360 for b, and -16000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-360±\sqrt{129600-4\left(-2\right)\left(-16000\right)}}{2\left(-2\right)}
Square 360.
x=\frac{-360±\sqrt{129600+8\left(-16000\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-360±\sqrt{129600-128000}}{2\left(-2\right)}
Multiply 8 times -16000.
x=\frac{-360±\sqrt{1600}}{2\left(-2\right)}
Add 129600 to -128000.
x=\frac{-360±40}{2\left(-2\right)}
Take the square root of 1600.
x=\frac{-360±40}{-4}
Multiply 2 times -2.
x=-\frac{320}{-4}
Now solve the equation x=\frac{-360±40}{-4} when ± is plus. Add -360 to 40.
x=80
Divide -320 by -4.
x=-\frac{400}{-4}
Now solve the equation x=\frac{-360±40}{-4} when ± is minus. Subtract 40 from -360.
x=100
Divide -400 by -4.
x=80 x=100
The equation is now solved.
-2x^{2}+360x-13000=3000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+360x-13000-\left(-13000\right)=3000-\left(-13000\right)
Add 13000 to both sides of the equation.
-2x^{2}+360x=3000-\left(-13000\right)
Subtracting -13000 from itself leaves 0.
-2x^{2}+360x=16000
Subtract -13000 from 3000.
\frac{-2x^{2}+360x}{-2}=\frac{16000}{-2}
Divide both sides by -2.
x^{2}+\frac{360}{-2}x=\frac{16000}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-180x=\frac{16000}{-2}
Divide 360 by -2.
x^{2}-180x=-8000
Divide 16000 by -2.
x^{2}-180x+\left(-90\right)^{2}=-8000+\left(-90\right)^{2}
Divide -180, the coefficient of the x term, by 2 to get -90. Then add the square of -90 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-180x+8100=-8000+8100
Square -90.
x^{2}-180x+8100=100
Add -8000 to 8100.
\left(x-90\right)^{2}=100
Factor x^{2}-180x+8100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-90\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x-90=10 x-90=-10
Simplify.
x=100 x=80
Add 90 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}