Factor
-2\left(x-5\right)\left(x+4\right)
Evaluate
-2\left(x-5\right)\left(x+4\right)
Graph
Share
Copied to clipboard
2\left(-x^{2}+x+20\right)
Factor out 2.
a+b=1 ab=-20=-20
Consider -x^{2}+x+20. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
-1,20 -2,10 -4,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
a=5 b=-4
The solution is the pair that gives sum 1.
\left(-x^{2}+5x\right)+\left(-4x+20\right)
Rewrite -x^{2}+x+20 as \left(-x^{2}+5x\right)+\left(-4x+20\right).
-x\left(x-5\right)-4\left(x-5\right)
Factor out -x in the first and -4 in the second group.
\left(x-5\right)\left(-x-4\right)
Factor out common term x-5 by using distributive property.
2\left(x-5\right)\left(-x-4\right)
Rewrite the complete factored expression.
-2x^{2}+2x+40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\times 40}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\left(-2\right)\times 40}}{2\left(-2\right)}
Square 2.
x=\frac{-2±\sqrt{4+8\times 40}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-2±\sqrt{4+320}}{2\left(-2\right)}
Multiply 8 times 40.
x=\frac{-2±\sqrt{324}}{2\left(-2\right)}
Add 4 to 320.
x=\frac{-2±18}{2\left(-2\right)}
Take the square root of 324.
x=\frac{-2±18}{-4}
Multiply 2 times -2.
x=\frac{16}{-4}
Now solve the equation x=\frac{-2±18}{-4} when ± is plus. Add -2 to 18.
x=-4
Divide 16 by -4.
x=-\frac{20}{-4}
Now solve the equation x=\frac{-2±18}{-4} when ± is minus. Subtract 18 from -2.
x=5
Divide -20 by -4.
-2x^{2}+2x+40=-2\left(x-\left(-4\right)\right)\left(x-5\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4 for x_{1} and 5 for x_{2}.
-2x^{2}+2x+40=-2\left(x+4\right)\left(x-5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}