Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-x^{2}+6x-9\right)
Factor out 2.
a+b=6 ab=-\left(-9\right)=9
Consider -x^{2}+6x-9. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,9 3,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 9.
1+9=10 3+3=6
Calculate the sum for each pair.
a=3 b=3
The solution is the pair that gives sum 6.
\left(-x^{2}+3x\right)+\left(3x-9\right)
Rewrite -x^{2}+6x-9 as \left(-x^{2}+3x\right)+\left(3x-9\right).
-x\left(x-3\right)+3\left(x-3\right)
Factor out -x in the first and 3 in the second group.
\left(x-3\right)\left(-x+3\right)
Factor out common term x-3 by using distributive property.
2\left(x-3\right)\left(-x+3\right)
Rewrite the complete factored expression.
-2x^{2}+12x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
Square 12.
x=\frac{-12±\sqrt{144+8\left(-18\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-12±\sqrt{144-144}}{2\left(-2\right)}
Multiply 8 times -18.
x=\frac{-12±\sqrt{0}}{2\left(-2\right)}
Add 144 to -144.
x=\frac{-12±0}{2\left(-2\right)}
Take the square root of 0.
x=\frac{-12±0}{-4}
Multiply 2 times -2.
-2x^{2}+12x-18=-2\left(x-3\right)\left(x-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 3 for x_{2}.