Solve for x
x=\frac{1}{2}=0.5
x=-\frac{1}{4}=-0.25
Graph
Share
Copied to clipboard
-2x^{2}+\frac{1}{2}x+\frac{1}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-2\right)\times \frac{1}{4}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, \frac{1}{2} for b, and \frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-2\right)\times \frac{1}{4}}}{2\left(-2\right)}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+8\times \frac{1}{4}}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+2}}{2\left(-2\right)}
Multiply 8 times \frac{1}{4}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{9}{4}}}{2\left(-2\right)}
Add \frac{1}{4} to 2.
x=\frac{-\frac{1}{2}±\frac{3}{2}}{2\left(-2\right)}
Take the square root of \frac{9}{4}.
x=\frac{-\frac{1}{2}±\frac{3}{2}}{-4}
Multiply 2 times -2.
x=\frac{1}{-4}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{3}{2}}{-4} when ± is plus. Add -\frac{1}{2} to \frac{3}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{4}
Divide 1 by -4.
x=-\frac{2}{-4}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{3}{2}}{-4} when ± is minus. Subtract \frac{3}{2} from -\frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{1}{4} x=\frac{1}{2}
The equation is now solved.
-2x^{2}+\frac{1}{2}x+\frac{1}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
-2x^{2}+\frac{1}{2}x=-\frac{1}{4}
Subtracting \frac{1}{4} from itself leaves 0.
\frac{-2x^{2}+\frac{1}{2}x}{-2}=-\frac{\frac{1}{4}}{-2}
Divide both sides by -2.
x^{2}+\frac{\frac{1}{2}}{-2}x=-\frac{\frac{1}{4}}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{1}{4}x=-\frac{\frac{1}{4}}{-2}
Divide \frac{1}{2} by -2.
x^{2}-\frac{1}{4}x=\frac{1}{8}
Divide -\frac{1}{4} by -2.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{1}{8}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{1}{8}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{9}{64}
Add \frac{1}{8} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=\frac{9}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{3}{8} x-\frac{1}{8}=-\frac{3}{8}
Simplify.
x=\frac{1}{2} x=-\frac{1}{4}
Add \frac{1}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}