Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-2t^{2}+4t+21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 21}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-4±\sqrt{16-4\left(-2\right)\times 21}}{2\left(-2\right)}
Square 4.
t=\frac{-4±\sqrt{16+8\times 21}}{2\left(-2\right)}
Multiply -4 times -2.
t=\frac{-4±\sqrt{16+168}}{2\left(-2\right)}
Multiply 8 times 21.
t=\frac{-4±\sqrt{184}}{2\left(-2\right)}
Add 16 to 168.
t=\frac{-4±2\sqrt{46}}{2\left(-2\right)}
Take the square root of 184.
t=\frac{-4±2\sqrt{46}}{-4}
Multiply 2 times -2.
t=\frac{2\sqrt{46}-4}{-4}
Now solve the equation t=\frac{-4±2\sqrt{46}}{-4} when ± is plus. Add -4 to 2\sqrt{46}.
t=-\frac{\sqrt{46}}{2}+1
Divide -4+2\sqrt{46} by -4.
t=\frac{-2\sqrt{46}-4}{-4}
Now solve the equation t=\frac{-4±2\sqrt{46}}{-4} when ± is minus. Subtract 2\sqrt{46} from -4.
t=\frac{\sqrt{46}}{2}+1
Divide -4-2\sqrt{46} by -4.
-2t^{2}+4t+21=-2\left(t-\left(-\frac{\sqrt{46}}{2}+1\right)\right)\left(t-\left(\frac{\sqrt{46}}{2}+1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1-\frac{\sqrt{46}}{2} for x_{1} and 1+\frac{\sqrt{46}}{2} for x_{2}.