Solve for x
x=\frac{\sqrt{26}}{2}+19\approx 21.549509757
x=-\frac{\sqrt{26}}{2}+19\approx 16.450490243
Graph
Share
Copied to clipboard
-2\left(x-19\right)^{2}+13-13=-13
Subtract 13 from both sides of the equation.
-2\left(x-19\right)^{2}=-13
Subtracting 13 from itself leaves 0.
\frac{-2\left(x-19\right)^{2}}{-2}=-\frac{13}{-2}
Divide both sides by -2.
\left(x-19\right)^{2}=-\frac{13}{-2}
Dividing by -2 undoes the multiplication by -2.
\left(x-19\right)^{2}=\frac{13}{2}
Divide -13 by -2.
x-19=\frac{\sqrt{26}}{2} x-19=-\frac{\sqrt{26}}{2}
Take the square root of both sides of the equation.
x-19-\left(-19\right)=\frac{\sqrt{26}}{2}-\left(-19\right) x-19-\left(-19\right)=-\frac{\sqrt{26}}{2}-\left(-19\right)
Add 19 to both sides of the equation.
x=\frac{\sqrt{26}}{2}-\left(-19\right) x=-\frac{\sqrt{26}}{2}-\left(-19\right)
Subtracting -19 from itself leaves 0.
x=\frac{\sqrt{26}}{2}+19
Subtract -19 from \frac{\sqrt{26}}{2}.
x=-\frac{\sqrt{26}}{2}+19
Subtract -19 from -\frac{\sqrt{26}}{2}.
x=\frac{\sqrt{26}}{2}+19 x=-\frac{\sqrt{26}}{2}+19
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}