Solve for x
x = \frac{26}{5} = 5\frac{1}{5} = 5.2
Graph
Share
Copied to clipboard
-2x+6+1=-3\left(-x+7\right)+2
Use the distributive property to multiply -2 by x-3.
-2x+7=-3\left(-x+7\right)+2
Add 6 and 1 to get 7.
-2x+7=-3\left(-x\right)-21+2
Use the distributive property to multiply -3 by -x+7.
-2x+7=3x-21+2
Multiply -3 and -1 to get 3.
-2x+7=3x-19
Add -21 and 2 to get -19.
-2x+7-3x=-19
Subtract 3x from both sides.
-5x+7=-19
Combine -2x and -3x to get -5x.
-5x=-19-7
Subtract 7 from both sides.
-5x=-26
Subtract 7 from -19 to get -26.
x=\frac{-26}{-5}
Divide both sides by -5.
x=\frac{26}{5}
Fraction \frac{-26}{-5} can be simplified to \frac{26}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}