Verify
false
Share
Copied to clipboard
-8\left(\frac{5}{4}+1\right)+24\times \frac{5}{4}-12-12=-\left(4\times 4+5\right)+20
Multiply both sides of the equation by 4.
-8\left(\frac{5}{4}+\frac{4}{4}\right)+24\times \frac{5}{4}-12-12=-\left(4\times 4+5\right)+20
Convert 1 to fraction \frac{4}{4}.
-8\times \frac{5+4}{4}+24\times \frac{5}{4}-12-12=-\left(4\times 4+5\right)+20
Since \frac{5}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
-8\times \frac{9}{4}+24\times \frac{5}{4}-12-12=-\left(4\times 4+5\right)+20
Add 5 and 4 to get 9.
\frac{-8\times 9}{4}+24\times \frac{5}{4}-12-12=-\left(4\times 4+5\right)+20
Express -8\times \frac{9}{4} as a single fraction.
\frac{-72}{4}+24\times \frac{5}{4}-12-12=-\left(4\times 4+5\right)+20
Multiply -8 and 9 to get -72.
-18+24\times \frac{5}{4}-12-12=-\left(4\times 4+5\right)+20
Divide -72 by 4 to get -18.
-18+\frac{24\times 5}{4}-12-12=-\left(4\times 4+5\right)+20
Express 24\times \frac{5}{4} as a single fraction.
-18+\frac{120}{4}-12-12=-\left(4\times 4+5\right)+20
Multiply 24 and 5 to get 120.
-18+30-12-12=-\left(4\times 4+5\right)+20
Divide 120 by 4 to get 30.
12-12-12=-\left(4\times 4+5\right)+20
Add -18 and 30 to get 12.
-12=-\left(4\times 4+5\right)+20
Subtract 12 from 12 to get 0.
-12=-\left(16+5\right)+20
Multiply 4 and 4 to get 16.
-12=-21+20
Add 16 and 5 to get 21.
-12=-1
Add -21 and 20 to get -1.
\text{false}
Compare -12 and -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}