Evaluate
\frac{2\left(1-x\right)\left(x+5\right)}{3}
Factor
\frac{2\left(1-x\right)\left(x+5\right)}{3}
Graph
Quiz
Polynomial
5 problems similar to:
-2 \frac{ { x }^{ 2 } }{ 3 } -8 \frac{ x }{ 3 } + \frac{ 10 }{ 3 }
Share
Copied to clipboard
\frac{-2x^{2}}{3}-8\times \frac{x}{3}+\frac{10}{3}
Express -2\times \frac{x^{2}}{3} as a single fraction.
\frac{-2x^{2}}{3}-\frac{8x}{3}+\frac{10}{3}
Express 8\times \frac{x}{3} as a single fraction.
\frac{-2x^{2}-8x}{3}+\frac{10}{3}
Since \frac{-2x^{2}}{3} and \frac{8x}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}-8x+10}{3}
Since \frac{-2x^{2}-8x}{3} and \frac{10}{3} have the same denominator, add them by adding their numerators.
\frac{2\left(-x^{2}-4x+5\right)}{3}
Factor out \frac{2}{3}.
a+b=-4 ab=-5=-5
Consider -x^{2}-4x+5. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
a=1 b=-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-x^{2}+x\right)+\left(-5x+5\right)
Rewrite -x^{2}-4x+5 as \left(-x^{2}+x\right)+\left(-5x+5\right).
x\left(-x+1\right)+5\left(-x+1\right)
Factor out x in the first and 5 in the second group.
\left(-x+1\right)\left(x+5\right)
Factor out common term -x+1 by using distributive property.
\frac{2\left(-x+1\right)\left(x+5\right)}{3}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}