Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-1800x^{2}-62000000x-600000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-62000000\right)±\sqrt{\left(-62000000\right)^{2}-4\left(-1800\right)\left(-600000000\right)}}{2\left(-1800\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1800 for a, -62000000 for b, and -600000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-62000000\right)±\sqrt{3844000000000000-4\left(-1800\right)\left(-600000000\right)}}{2\left(-1800\right)}
Square -62000000.
x=\frac{-\left(-62000000\right)±\sqrt{3844000000000000+7200\left(-600000000\right)}}{2\left(-1800\right)}
Multiply -4 times -1800.
x=\frac{-\left(-62000000\right)±\sqrt{3844000000000000-4320000000000}}{2\left(-1800\right)}
Multiply 7200 times -600000000.
x=\frac{-\left(-62000000\right)±\sqrt{3839680000000000}}{2\left(-1800\right)}
Add 3844000000000000 to -4320000000000.
x=\frac{-\left(-62000000\right)±5200000\sqrt{142}}{2\left(-1800\right)}
Take the square root of 3839680000000000.
x=\frac{62000000±5200000\sqrt{142}}{2\left(-1800\right)}
The opposite of -62000000 is 62000000.
x=\frac{62000000±5200000\sqrt{142}}{-3600}
Multiply 2 times -1800.
x=\frac{5200000\sqrt{142}+62000000}{-3600}
Now solve the equation x=\frac{62000000±5200000\sqrt{142}}{-3600} when ± is plus. Add 62000000 to 5200000\sqrt{142}.
x=\frac{-13000\sqrt{142}-155000}{9}
Divide 62000000+5200000\sqrt{142} by -3600.
x=\frac{62000000-5200000\sqrt{142}}{-3600}
Now solve the equation x=\frac{62000000±5200000\sqrt{142}}{-3600} when ± is minus. Subtract 5200000\sqrt{142} from 62000000.
x=\frac{13000\sqrt{142}-155000}{9}
Divide 62000000-5200000\sqrt{142} by -3600.
x=\frac{-13000\sqrt{142}-155000}{9} x=\frac{13000\sqrt{142}-155000}{9}
The equation is now solved.
-1800x^{2}-62000000x-600000000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-1800x^{2}-62000000x-600000000-\left(-600000000\right)=-\left(-600000000\right)
Add 600000000 to both sides of the equation.
-1800x^{2}-62000000x=-\left(-600000000\right)
Subtracting -600000000 from itself leaves 0.
-1800x^{2}-62000000x=600000000
Subtract -600000000 from 0.
\frac{-1800x^{2}-62000000x}{-1800}=\frac{600000000}{-1800}
Divide both sides by -1800.
x^{2}+\left(-\frac{62000000}{-1800}\right)x=\frac{600000000}{-1800}
Dividing by -1800 undoes the multiplication by -1800.
x^{2}+\frac{310000}{9}x=\frac{600000000}{-1800}
Reduce the fraction \frac{-62000000}{-1800} to lowest terms by extracting and canceling out 200.
x^{2}+\frac{310000}{9}x=-\frac{1000000}{3}
Reduce the fraction \frac{600000000}{-1800} to lowest terms by extracting and canceling out 600.
x^{2}+\frac{310000}{9}x+\left(\frac{155000}{9}\right)^{2}=-\frac{1000000}{3}+\left(\frac{155000}{9}\right)^{2}
Divide \frac{310000}{9}, the coefficient of the x term, by 2 to get \frac{155000}{9}. Then add the square of \frac{155000}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}=-\frac{1000000}{3}+\frac{24025000000}{81}
Square \frac{155000}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}=\frac{23998000000}{81}
Add -\frac{1000000}{3} to \frac{24025000000}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{155000}{9}\right)^{2}=\frac{23998000000}{81}
Factor x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{155000}{9}\right)^{2}}=\sqrt{\frac{23998000000}{81}}
Take the square root of both sides of the equation.
x+\frac{155000}{9}=\frac{13000\sqrt{142}}{9} x+\frac{155000}{9}=-\frac{13000\sqrt{142}}{9}
Simplify.
x=\frac{13000\sqrt{142}-155000}{9} x=\frac{-13000\sqrt{142}-155000}{9}
Subtract \frac{155000}{9} from both sides of the equation.