Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-18y^{6}\right)^{1}\times \frac{1}{-9y^{3}}
Use the rules of exponents to simplify the expression.
\left(-18\right)^{1}\left(y^{6}\right)^{1}\times \frac{1}{-9}\times \frac{1}{y^{3}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-18\right)^{1}\times \frac{1}{-9}\left(y^{6}\right)^{1}\times \frac{1}{y^{3}}
Use the Commutative Property of Multiplication.
\left(-18\right)^{1}\times \frac{1}{-9}y^{6}y^{3\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-18\right)^{1}\times \frac{1}{-9}y^{6}y^{-3}
Multiply 3 times -1.
\left(-18\right)^{1}\times \frac{1}{-9}y^{6-3}
To multiply powers of the same base, add their exponents.
\left(-18\right)^{1}\times \frac{1}{-9}y^{3}
Add the exponents 6 and -3.
-18\times \frac{1}{-9}y^{3}
Raise -18 to the power 1.
-18\left(-\frac{1}{9}\right)y^{3}
Raise -9 to the power -1.
2y^{3}
Multiply -18 times -\frac{1}{9}.
\frac{\left(-18\right)^{1}y^{6}}{\left(-9\right)^{1}y^{3}}
Use the rules of exponents to simplify the expression.
\frac{\left(-18\right)^{1}y^{6-3}}{\left(-9\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-18\right)^{1}y^{3}}{\left(-9\right)^{1}}
Subtract 3 from 6.
2y^{3}
Divide -18 by -9.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(-\frac{18}{-9}\right)y^{6-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(2y^{3})
Do the arithmetic.
3\times 2y^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
6y^{2}
Do the arithmetic.